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CHAPTER 1: INTRODUCTION 

1.1 Drug metabolism in the liver and intestine  

 The liver and the intestines are among the major organs that determine the bioavailability of 

xenobiotics and maintain the homeostasis of many endogenous molecules that play important 

roles in cell signaling and metabolic pathways. A large portion of the hepatic and intestinal 

metabolic capacity is mediated by xenobiotic-metabolizing enzymes that are capable of 

detoxifying foreign substances by converting them into hydrophilic metabolites that are excreted 

through urine or bile, converting drugs into their pharmacologically active forms, bioactivating 

procarcinogens, and regulating physiological pathways. The process of drug 

metabolism/transport is generally divided into three phases: (1) phase I reactions that introduce 

a functional group into their substrates; (2) phase II reactions that conjugate endogenous 

molecules onto foreign and endogenous compounds; and (3) phase III reactions that facilitate the 

uptake of molecules into cells and efflux of metabolites through drug transporters.  

 Phase I reactions are mediated by several families of drug-metabolizing enzymes, including 

cytochrome P450s (CYPs). CYPs are a major superfamily of phase I drug-metabolizing enzymes 

and they are abundantly expressed in the endoplasmic reticulum of the liver and intestines. In 

addition to metabolizing a vast number of drugs and environmental chemicals, CYPs can 

metabolize a broad range of endogenous molecules, such as steroids (Wang et al., 1997; Lee et 

al., 2003) and fatty acids (Capdevila et al., 1981; Schwarz et al., 2004).  

 Phase II reactions are catalyzed by transferases that are classified into six major families of  

conjugation enzymes: (1) UDP glucuronosyltransferases (UGTs), a superfamily of enzymes that 

catalyze the transfer of a glucuronic acid molecule from UDP-glucuronic acid to their substrates; 

(2) N-acetyltransferases (NATs), a multi-gene family of enzymes that catalyze the transfer of an 

acetyl group from acetyl co-enzyme A to their substrates; (3) glutathione S-transferases (GSTs), 

a superfamily of enzymes responsible for the transfer of a glutathione molecule from the tripeptide 

glutathione to its target molecules; (4) thiopurine S-methyltransferases (TPMTs), an enzyme 
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responsible for the transfer of a methyl group from S-adenosylmethionine (SAM) to its target 

molecules; (5) catechol O-methyltransferases (COMTs), a class of enzymes that catalyze the 

transfer of a methyl group from SAM to its substrates; and (6) cytosolic sulfotransferases (SULTs), 

a superfamily of enzymes that catalyze the transfer of a sulfonate group (-SO3) from 3’-

phosphoadenosine-5’-phosphosulfate (PAPS) to their substrates. Conjugation enzymes are 

widely expressed in human tissues, including liver and intestine, and many of these enzymes 

exhibit tissue-specific expression patterns (Jancova et al., 2010). 

 Phase III drug transporters play an essential role in drug absorption, distribution, and excretion. 

Drug transporters, including P-glycoprotein (Thiebaut et al., 1987), multidrug resistance proteins 

(Mayer et al., 1995; Konig et al., 1999; Fromm et al., 2000), and organic anion transporting 

polypeptide 2 (Lu et al., 1996; Abe et al., 1999), are expressed in the liver and intestine and they 

act as a barrier that regulates drug influx and efflux, thus providing a path for drugs to be 

eliminated.  

 The liver is thought to be the major contributor to the first pass metabolism because of its 

greater weight and CYP microsomal content, compared to the intestine (Lin et al., 1999; Doherty 

and Charman, 2002). The hepatocytes are the liver’s major cell type and they are responsible for 

90% of hepatic drug disposition. Expression of drug metabolism is heterogeneously distributed 

among hepatocytes. The compartmented gene expression results in phenotypic differences 

among the cells and the metabolic zonation of the liver. Most genes that are expressed in the liver 

have zone-specific expression patterns, which reflects their function in the liver. CYPs are 

primarily expressed in the centrilobular zone, whereas phase II enzymes, including UGTs, SULTs, 

and GSTs, are expressed in the periportal as well as centrilobular region, suggesting that these 

enzymes play an important role in endogenous metabolism (Gebhardt, 1992; Lindros, 1997). 

 The intestines which are the site of entry for orally ingested nutrients and xenobiotics, 

significantly contributes to the first pass metabolism of many of the exogenous molecules that 

enter the intestine before reaching the liver, thus preventing the uptake of many of these 
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molecules. A variety of enzymes involved in drug metabolism are expressed in the different 

segments of the intestine (Ilett et al., 1990; Labroo et al., 1997; Shen et al., 1997; Beyerle et al., 

2015). The expression of phase I and II enzymes is mainly localized in the intestinal mucosal 

epithelial cells that are located in the villous tips of the upper small intestine, the duodenum and 

jejenum (Ilett et al., 1990). These enzymes are also expressed in the crypts and the lower small 

intestine (ileum) and colon, but at a lower concentration (de Waziers et al., 1990). 

1.2 Characteristics of human SULT genes  

 SULTs are ubiquitously expressed in mammalian and other eukaryotic organisms (Coughtrie, 

2002). They conjugate a sulfonate group to a wide variety of alcohol, phenol, amine, N-oxide, and 

N-hydroxyl substrates, including cholesterol, hormones, neurotransmitters, drugs, and 

environmental chemicals (Table 1.1). PAPS, which is the sulfonate donor, is synthesized from an 

inorganic sulfate and ATP in a two-step process that is catalyzed by the PAPS synthase enzymes, 

PAPSS1 and PAPSS2 (Klaassen and Boles, 1997).  

 The SULT superfamily contains 13 human genes that are classified into four families based on 

their amino acid sequence similarity; SULT1, SULT2, SULT4, and SULT6; and each family is 

further divided into subfamilies (Fig. 1.1A) (Blanchard et al., 2004). SULT1 and SULT2 are the 

best characterized families in terms of their substrates, tissue-specific expression, and regulation. 

The nomenclature and classification of the SULT genes is based on amino acid sequence 

similarity, whereby SULTs that share 45% and 60% amino acid sequence are classified into the 

same family and subfamily, respectively. However, clustering analysis of global sequence 

similarity, local sequence of the substrate-binding site, and catalytic activity profiles demonstrated 

that enzymes that are closely related in terms of amino acid sequence do not necessarily have 

similar substrate binding sites or substrate specificity, as shown in Fig. 1.1 (Tibbs et al., 2015). 

While SULTs within the same family have overlapping substrate specificities, they display 

markedly different preferences toward exogenous and endogenous compounds. For example, 

although SULT1A1 and SULT1A3 can sulfonate thyroid hormones, SULT1A1 sulfonation capacity 
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towards thyroid hormones was greater than that of SULT1A3 (Richard et al., 2001). SULTs can 

also have distinct substrate profiles (Table 1.1). Numerous single nucleotide polymorphisms 

(SNPs) were detected in the promoter and coding regions of the SULT genes (Iida et al., 2001; 

Nowell and Falany, 2006). This is exemplified by the SNPs found in the SULT1A1 gene that were 

associated with a lower enzymatic activity and increased risk of breast and colon cancer (Bamber 

et al., 2001; Ning et al., 2005; Shatalova et al., 2006). SNPs were also identified in the SULT2A1 

gene and they have been implicated with a decrease in the levels of dehydroepiandrosterone 

(DHEA) and DHEA-sulfate that could be associated with an increased risk of prostate cancer 

knowing that  the latter is a precursor for the synthesis of androgens and estrogens (Wilborn et 

al., 2006). 
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Clustering analysis of the human SULTs based on (A) global sequence similarity, (B) local 
sequence of the substrate binding site, and (C) catalytic activity profiles. * and ** referred to as 
SULT1C2 and SULT1C4 throughout the dissertation, respectively. 
Figure taken with permission shown in Appendix A (Tibbs et al., 2015). 
  

* ** 

* 

* 

** 

** 
Figure 1.1: Relationship between human SULTs. 
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Table 1.1: Endogenous and exogenous substrates of human SULT enzymes 
SULT 
gene 

Substrates 
Endogenous Xenobiotics 

SULT1A1 Iodothyronines (Kester et al., 1999), 4-methyl 

phenol (Allali-Hassani et al., 2007), estradiol, 

catecholestrogens (Adjei and Weinshilboum, 

2002; Hui et al., 2008) 

Drugs, chemicals, and dietary compounds: 
p-nitrophenol, m-nitrophenol, p-ethylphenol, p-

cresol (Wilborn et al., 1993; Brix et al., 1999), 

oxymorphone, acetominophen, minoxidil 

(Tibbs et al., 2015), nalbuphine, nalorphine, 

naltrexone (Kurogi et al., 2014) 

Procarcinogens: 2,4-dinitrobenzylalcohol, 2-

acetylamino-4 hydroxylaminotoluene, N-

hydroxy-2- acetylamino-3-methyl-5-

phenylpyridine, 2-hydroxylamino-1-methyl-6-

phenylimidazo[4,5-b]-  

pyridine (N-OH-PhIP), 2-nitropropane (Glatt, 

2000), 2-hydroxymethylcholanthrene 

(Banoglu, 2000) 

SULT1A2 Estradiol and catecholestrogens (Adjei and 

Weinshilboum, 2002; Hui et al., 2008) 

Drugs, chemicals, and dietary compounds: 
p-nitrophenol (Zhu et al., 1996), naloxone 

(Kurogi et al., 2012a), minoxidil, β-naphthol 

(Sundaram et al., 1989) 

Procarcinogens: N-hydroxy-2-

acetylaminofluorene (Glatt, 2000) 

SULT1A3 Dopamine, norepinephrine (Dajani et al., 1999), 

tyramine (Brix et al., 1999), Iodothyronines 

(Kester et al., 1999)  

Drugs, chemicals, and dietary compounds: 
Curcumin, demethoxycurcumin (Lu et al., 

2015) 

troglitazone (Honma et al., 2002), morphine, 

hydromorphone (Kurogi et al., 2014), O-

desmethyltramadol (Rasool et al., 2017) 

Procarcinogens: Oxamniquine (Glatt, 2000) 
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SULT1B1 Iodothyronines (Fujita et al., 1999)  Drugs, chemicals, and dietary compounds: 
Curcumin (Lu et al., 2015), 3-

hydroxybenzo[a]pyrene (Wang et al., 2004), 1-

naphthol (Wang et al., 1998) 

Procarcinogens: 6-hydroxymethylbenzo[a]-

pyrene, 4-hydroxycyclopenta[def ]chrysene 

(Glatt, 2000) 

SULT1C2 Iodothyronines (Li et al., 2000), Epinephrine, 

norepinephrine, 2-hydroxyestradiol, estrone 

(Allali-Hassani et al., 2007) 

Drugs, chemicals, and dietary compounds: 
p-nitrophenol, 4-nitrophenol, 1-naphthol, 2-

naphthol, 4-ethylphenol, 2-n-propylphenol, 2-

sec-butylphenol, vanillin, resveratrol (Allali-

Hassani et al., 2007) 

Procarcinogens: N-hydroxy-2-

acetylaminofluorene (Sakakibara et al., 1998) 

SULT1C3 
 
 
 
 
 
 
 
  

Lithocholic acid, a-Zearalenol (Allali-Hassani et 

al., 2007) 

Drugs, chemicals, and dietary compounds: 
1-naphthol, 4-nitrophenol, 2-ethylphenol, 2-n-

propylphenol, 2-sec-butylphenol, a-zearalenol, 

vanillin (Allali-Hassani et al., 2007), 1,2,3,4 

tetrahydro 1-naphthol, tolvaptan  (Fang JL, 

2016) 

Procarcinogens: 1-hydroxymethylpyrene, 

(+)-1-(a-hydroxyethyl)pyrene, (-)-1-(a-

hydroxyethyl)pyrene, 6-

hydroxymethylbenzo[a]pyrene, 

6-hydroxymethylanthanthrene, 10-

hydroxysafrole (Meinl et al., 2008a) 
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SULT1C4 Estradiol, estrogen, catechol estrogens (Hui et 

al., 2008), dopamine (Pai et al., 2002), a-

zearalenol, T3, p-Cresol, tyramine, cholesterol, 

epinephrine, norepinephrine (Allali-Hassani et 

al., 2007) 

Drugs, chemicals, and dietary compounds: 
Genistein, daidzein, apigenin, chrysin, 6,4′-

dihydroxyflavone, BPA (Guidry et al., 2017), 1-

naphthol, 2-naphthol, 2-ethylphenol, 4-

ethylphenol, 4-aminophenol, 2-n-propylphenol, 

2-sec-butylphenol, 4-octylphenol, 4-n-

nonylphenol, vanillin, acetominophen, 

resveratrol (Allali-Hassani et al., 2007), O-

desmethyltramadol (Rasool et al., 2017), 

clioquinol , iodoquinol (Yamamoto et al., 

2016), doxorubicin, epirubicin (Luo et al., 

2016b), Tapentadol (Bairam et al., 2017), 

ethanol (Kurogi et al., 2012b), acetaminophen 

(Yamamoto et al., 2015) 

Procarcinogens: N-hydroxy-2-

acetylaminofluorene, 2-hydroxylamino-3-

methyl-9H-pyrido[2,3-b]indole, cigarette 

smoke extract components, 5-

hydroxymethylfurfural, 2,5-

(bishydroxymethyl)furan, furfuryl alcohol, 5-

methylfurfuryl alcohol, (+)-10-

Hydroxymethyleugenol, (-)-10-

hydroxymethyleugenol, (E)-30- 

hydroxymethylisoeugenol (Runge-Morris and 

Kocarek, 2013) 
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SULT1E1 Estradiol, estrone, catecholestrogens (Adjei and 

Weinshilboum, 2002), Iodothyronines (Kester et 

al., 1999), dehydroepiandrosterone, 

pregnenolone, ethinylestradiol, and 1-naphthol 

(Falany et al., 1995) 
 

Drugs, chemicals, and dietary compounds: 
troglitazone (Honma et al., 2002) 

Procarcinogens: (−)-1-(a- 

Hydroxyethyl)pyrene [(−)-1-HEP], (+)-1-(a- 

hydroxyethyl)pyrene[(+)-1-HEP], 1-

acetylpyrene (Glatt, 2000), 7-OH-7,8,9,10-

tetrahydrobenzo[a]pyrene, 10-OH-7,8,9,10-

tetrahydrobenzo[a]pyrene, 1-

hydroxymethylpyrene,  

S-(-)-1-hydroxyethylpyrene (Banoglu, 2000) 

SULT2A1 DHEA, bile acids (Falany et al., 1989), Estrone, 

Estradiol, and catecholestrogens (Adjei and 

Weinshilboum, 2002; Hui et al., 2008) 

Drugs, chemicals, and dietary compounds: 
Butorphanol , levorphanol (Kurogi et al., 

2014), tibolone (Falany et al., 2004), 

budesonide (Meloche et al., 2002), quinolone 

drugs (Senggunprai et al., 2009)   

Procarcinogens: Hycanthone (Glatt, 2000), 

6-hydroxymethylbenzo[a]-pyrene, (R)-(+)-1- 

hydroxyethylpyrene (Banoglu, 2000) 

SULT2B1 DHEA (Meloche and Falany, 2001), 25-

hydroxycholesterol (Bai et al., 2011), estradiol 

and catecholestrogens (Adjei and 

Weinshilboum, 2002; Hui et al., 2008)  

None reported 

SULT4A1 None reported None reported 

SULT6B1 None reported None reported 
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Table 1.2: Tissue distribution of human SULT mRNA and protein 

hSULT  mRNA Protein 
SULT1A1 Fetal: N/A Fetal: Liver, lung, kidney, adrenal, small 

intestine, brain (Richard et al., 2001; Stanley et 
al., 2005)  

Adult: Skin, kidney, liver, colon, ovary, brain 

(Dooley et al., 2000) 

Adult: Stomach, small intestine, colon, liver, 

lung, kidney, placenta (Stanley et al., 2005; 

Teubner et al., 2007; Riches et al., 2009)  

SULT1A2 Fetal:  N/A Fetal: N/A 
 

Adult: Liver, ovary, lung, kidney, intestine 

(Dooley et al., 2000) 

Adult: Liver (Teubner et al., 2007) 

SULT1A3 Fetal: N/A Fetal: Lung, liver, kidney, small intestine, brain 

(Richard et al., 2001; Stanley et al., 2005) 
 

Adult: Skin, oral mucosa, liver, lung, ovary, 

colon, brain, prostate (Dooley et al., 2000; 

Yalcin et al., 2013) 

Adult: Liver, lung, kidney, placenta, stomach, 

small intestine, colon (Richard et al., 2001; 

Stanley et al., 2005; Teubner et al., 2007; 

Riches et al., 2009)  

SULT1B1 Fetal: N/A Fetal: Small intestine (Stanley et al., 2005) 
 

Adult: Liver, kidney, ovary, stomach, small 

intestine, colon, brain, blood leukocytes, spleen 

leukocytes (Wang et al., 1998; Dooley et al., 

2000) 

Adult: Stomach, small intestine, colon, liver, 

lung, kidney, blood leukocytes (Wang et al., 

1998; Stanley et al., 2005; Teubner et al., 

2007; Riches et al., 2009) 

SULT1C2 Fetal: Kidney, liver (Her et al., 1997) Fetal: Kidney, liver, lung, small intestine (Her et 

al., 1997; Stanley et al., 2005)  
 

Adult: Kidney, stomach, thyroid, duodenum, 

colon, rectum, liver, ovary, brain (Dooley et al., 

2000; Bourgine et al., 2012; Hardwick et al., 

2013)  

Adult: Stomach, kidney, thyroid (Her et al., 

1997; Teubner et al., 2007) 

SULT1C3 Fetal:  N/A Fetal: N/A 
 

Adult: Small intestine, colon, rectum (Bourgine 

et al., 2012; Duniec-Dmuchowski et al., 2014) 

Adult: N/A 

SULT1C4 Fetal: Lung, kidney, and heart (Sakakibara et 

al., 1998) 

Fetal: N/A 
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Adult: Kidney, ovary, spinal cord, colon, and 

liver (Sakakibara et al., 1998; Bourgine et al., 

2012; Hardwick et al., 2013) 

Adult: N/A 

SULT1E1 Fetal: Liver, thyroid, adrenal gland, lung, kidney, 

heart, intestine (Miki et al., 2002)  

Fetal: Liver, kidney, lung, thyroid, brain 

(Stanley et al., 2005; Duanmu et al., 2006) 
 

Adult: Liver, kidney, brain, stomach, adrenal, 

lung, intestine, estrogen responsive tissues  

(Falany et al., 1998; Dooley et al., 2000; Miki et 

al., 2002)  

Adult: Liver, lung, colon, small intestine, breast, 

endometrium, prostate, testis (Falany et al., 

1998; Miki et al., 2002; Stanley et al., 2005; 

Teubner et al., 2007; Riches et al., 2009) 

SULT2A1 Fetal: Adrenal (Forbes et al., 1995) Fetal: Liver and adrenal (Barker et al., 1994; 

Stanley et al., 2005; Duanmu et al., 2006) 
 

Adult: Liver, adrenal gland, small intestine 

(Dooley et al., 2000) 

Adult: Adrenal gland, small intestine, liver, lung 

(Tashiro et al., 2000; Teubner et al., 2007; 

Riches et al., 2009) 

SULT2B1 Fetal: Brain (Falany and Rohn-Glowacki, 2013) Fetal: Brain (Falany and Rohn-Glowacki, 2013) 
 

Adult: Skin, oral mucosa, prostate, colorectal, 

placenta, lung, trachea, brain (Her et al., 1998; 

Meloche and Falany, 2001; He et al., 2005; 

Falany and Rohn-Glowacki, 2013) 

Adult: Prostate, placenta, skin, lung, brain, 

breast, endometrium, platelets (He et al., 2005; 

Falany and Rohn-Glowacki, 2013) 

SULT4A1 Adult: Brain (Liyou et al., 2003) N/A 

SULT6B1 Adult: Testis (Allali-Hassani et al., 2007) N/A 

 N/A: stands for not available  
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1.2.1 SULT1 family 

The SULT1 family includes 9 human SULTs, which are known to sulfonate phenolic compounds. 

Members of the SULT1 family have been shown to detoxify a myriad of xenobiotics (Table 1.1). 

SULT1A 

 The SULT1A subfamily contains 4 genes, SULT1A1, SULT1A2, SULT1A3, and SULT1A4, 

which are clustered on chromosome 16 (Blanchard et al., 2004). SULT1A1 was the first member 

of the subfamily to be identified (Wilborn et al., 1993), and was shown to be one of the most 

abundant SULT proteins in the liver and the major SULT1A protein in the human body (Riches et 

al., 2009). There are five SULT1A1 transcript variants (TVs) that are indexed in the NCBI 

database (to be discussed in chapter 2) that encode two SULT1A1 isoforms: isoform a, which is 

made up of 295 amino acids, encoded by TVs 1 to 4; and isoform b, which is made up of 217 

amino acids, encoded by TV5. SULT1A1 has a hydrophobic substrate-binding pocket that prefers 

to bind uncharged phenolic compounds, especially simple ones like p-nitrophenol. SULT1A1 is 

the only SULT1A that is expressed in species other than higher primates, including rodents. This 

gene has at least fifteen allelic variants that encode four allozymes, which were detected in the 

human population (Raftogianis et al., 1997; Raftogianis et al., 1999).  

 SULT1A2 was first cloned from a human liver library and was not detected in any other species 

(Ozawa et al., 1995). Although SULT1A2 shares more than 93% of its coding sequence with 

SULT1A1 and SULT1A3, its sulfonation activity towards some of the preferred SULT1A1 and 

SULT1A3 substrates is variable. SULT1A2 has thirteen allelic variants that encode six allozymes, 

three of which (allozymes 1 to 3) have different biochemical and physical properties (Raftogianis 

et al., 1999). 

 SULT1A3 and SULT1A4, which were generated by a gene duplication event on chromosome 

16, are very closely related genes. SULT1A3/4 genes were only found in humans and other higher 

primates and they encode an identical protein that is made up of 295 amino acids despite some 

sequence variation at the DNA level. SULT1A3 is primarily expressed in the human intestine and 
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fetal, but not adult, liver (Stanley et al., 2005; Teubner et al., 2007; Riches et al., 2009). The 

SULT1A3 substrate-binding site contains acidic residues, and thus prefers positively charged 

molecules such as dopamine and other monoamines. SULT1A3 has at least eleven allelic 

variants that encode two allozymes (Thomae et al., 2003). 

SULT1B 

 SULT1B1 was first isolated from a human liver library and was classified into the SULT1B 

family because of its similarity to rat sult1b1 (74% in the amino acid sequence). SULT1B1, which 

is located on chromosome 4, is the major SULT in the small intestine (Riches et al., 2009). Its 

coding sequence encodes a protein that is made up of 296 amino acids.  

SULT1C 

 SULT1C subfamily consist of three members; SULT1C2, SULT1C3, and SULT1C4, as well as 

a pseudogene, SULT1C2P1; that are located in a cluster on chromosome 2q12 (Freimuth et al., 

2004). In earlier studies SULT1C2 and SULT1C4 were referred to as SULT1C1 and SULT1C2, 

respectively (Blanchard et al., 2004). Although SULT1C mRNA was detected in adult tissues, the 

expression of these genes is higher in fetal tissues (Her et al., 1997; Sakakibara et al., 1998; 

Stanley et al., 2005).  

 SULT1C2 is the first human member of the SULT1C family to be cloned (Her et al., 1997). It 

has two splice variants that encode two full length proteins, SULT1C2a and SULT1C2b, that are 

made up of 296 and 307 amino acids, respectively. Although the two SULT1C2 isoforms are 91% 

identical, the differences, which are in the intermediate amino acid sequences, could have an 

impact on the proteins’ functionality.   

 There is very little known about the expression, regulation, and substrate specificity of 

SULT1C3 enzyme, which was identified through computational analysis of the human genome 

and was predicted to have exon duplications that could theoretically produce four splice variants; 

SULT1C3a, b, c, and d (Freimuth et al., 2004; Allali-Hassani et al., 2007). Previous studies 

screening for the splice variant encoding the “SULT1C3d” isoform containing exons 7b/8b failed 
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to detect this transcript in human tissues (Freimuth et al., 2004; Meinl et al., 2008a). However, 

SULT1C3a containing exon 7a/8a was detected in human intestinal tissues and LS180 colorectal 

adenocarcinoma cells (Duniec-Dmuchowski et al., 2014; Rondini et al., 2014).  

 The full-length SULT1C4 cDNA was originally cloned and characterized from human fetal lung 

(Sakakibara et al., 1998; Freimuth et al., 2000). SULT1C4 has two transcript variants that are 

indexed in the GenBank database. The full-length transcript (TV1) encodes SULT1C4 isoform a 

that is made up of 302 amino acids, and TV2 encodes isoform b that is made up of 227 amino 

acids. The substrate-binding site of SULT1C4 is similar to that of SULT1A1 and SULT1B1, and 

thus these three SULTs share many of the same substrates (Dong et al., 2012). 

SULT1E1 

 The SULT1E1 gene is located on chromosome 4 and is only expressed in mammals. Unlike 

other SULT1 members, SULT1E1 is primarily involved in sulfonation of endogenous compounds, 

especially estrogens (Kester et al., 1999; Adjei and Weinshilboum, 2002; Hui et al., 2008). The 

inactivation of estrogen by SULT1E1 reduces the mitogenic effect of estrogen in breast epithelial 

cells (Falany et al., 1995) and promotes adipocyte differentiation (Wada et al., 2011). SULT1E1 

expression is induced in the homozygous cystic fibrosis transmembrane receptor (CFTR) knock-

out mouse model as well as a human cholangiocyte–hepatocyte co-culture model, where the 

knockdown of the CFTR in the cholangiocytes induced SULT1E1 expression in hepatocytes 

(Falany et al., 2009). The only known SULT1E1 transcript encodes a protein that is made up of 

294 amino acids.  

1.2.2 SULT2 family  

This SULT family includes two human genes, SULT2A1 and SULT2B1, that primarily sulfonate 

hydroxysteroids and are responsible for regulating cellular functions. Although these two genes 

are classified into two subfamilies, they are located in the same region of chromosome 19 

suggesting that they are a result of a gene duplication. 

SULT2A1 
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SULT2A1 was first identified and characterized in adult liver and it was found to be highly active 

towards dehydroepiandrosterone (Falany et al., 1989). It is expressed throughout development 

and is thought to be involved in steroid biosynthesis during fetal stages (Barker et al., 1994; 

Stanley et al., 2005; Duanmu et al., 2006). There is only one SULT2A1 transcript that encodes a 

285 amino acid-long protein. 

SULT2B1 

 Two SULT2B1 transcripts, SULT2B1a and SULT2B1b, that are derived from a single gene 

were identified and characterized using placental and prostate cDNA (Her et al., 1998). The two 

transcript variants, which are generated by alternate splicing of the first exon, encode two isoforms 

that are 350 and 365 amino acids long, respectively (Meloche and Falany, 2001). SULT2B1a and 

b mRNA is expressed in several human tissues with SULT2B1b mRNA being more abundant 

than that of SULT2B1a, but only SULT2B1b protein was detected in human tissues (Falany et al., 

2006). SULT2B1b is involved in regulating various physiological processes in extrahepatic 

tissues, where it is predominantly expressed. For example, cholesterol sulfate, which is produced 

by SULT2B1b, promotes keratinocyte differentiation (Higashi et al., 2004). 

1.2.3 Other SULT families 

  SULT4A1, the only member of the SULT4 family, is a brain-specific SULT and the most highly 

conserved SULT in vertebrates (Falany et al., 2000). Although SULT4A1 was cloned and 

characterized in rat, mouse, and human brain almost two decades ago, there are still no known 

substrates for this enzyme (Falany et al., 2000; Sakakibara et al., 2002). Several studies linked 

SULT4A1 polymorphisms and deletion to neurological disorders, such as schizophrenia (Brennan 

and Condra, 2005; Meltzer et al., 2008). SULT4A1 is thought to play a role in neuronal 

development because its expression is localized in the neurons and knocking out this gene in 

mice resulted in severe neurological symptoms, including tremor, rigidity, seizures, and death 

between postnatal days 21 – 25 (Garcia et al., 2018; Hashiguchi et al., 2018). The SULT6B1 
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gene, which is located on chromosome 2, was first identified by computational analysis, and 

expression profiling studies detected SULT6B1 mRNA in human testis (Freimuth et al., 2004).  

1.3 Consequences of sulfonate conjugation in human liver and intestine  

  Many SULTs are abundantly expressed in the liver and small intestine, and to a lesser extent 

in the colon (Teubner et al., 2007; Riches et al., 2009). In these tissues, SULTs can detoxify or 

bioactivate their target substrates, modulate the activity of endogenous compounds, or regulate 

the biosynthesis of hormones. There is relatively little information about zonal expression of 

SULTs in human liver, but in rat liver a SULT that most likely corresponds to SULT1A1 (termed 

ASTIV) was highest in centrilobular hepatocytes, where most of the enzymes involved in drug 

biotransformation are expressed (Chen et al., 1995). However, STa (corresponding to a SULT2A 

protein) expression was highest in periportal hepatocytes (Chen et al., 1995), where a majority of 

the expressed genes are involved in cellular metabolism (Lindros, 1997), suggesting that this 

protein is primarily involved in the regulation of metabolic pathways. Although SULTs are 

considered to be an important line of defense that protects organisms from chemical exposures, 

these enzymes can contribute to initiation of carcinogenesis and other diseases by bioactivating 

promutagens (Banoglu, 2000).  

1.3.1 Detoxification of exogenous molecules 

 Out of all thirteen SULTs, SULT1A1 and SULT1B1 are the two most active SULTs in hepatic 

metabolism of exogenous molecules because of their broad substrate specificities and high 

expression levels, together accounting for ~70% of SULT protein content (Coughtrie, 2016). 

Although SULT1A1 and SULT1B1 have overlapping substrates, the sulfonation capacity of the 

former is greater than the latter. Although SULT1C enzymes have not been studied extensively, 

the available information about the substrates of the three SULT1C enzymes indicates that 

SULT1C4 has the highest activity towards xenobiotics, and thus this enzyme plays an important 
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role in drug and environmental chemical metabolism (Yasuda et al., 2007; Hui et al., 2015; 

Yamamoto et al., 2015; Luo et al., 2016a; Luo et al., 2016b).  

 In the small intestine and colon, SULT1B1 and SULT1A3 are the most abundant SULTs 

(Teubner et al., 2007; Riches et al., 2009). SULT1A1 protein is also present at relatively high 

levels, but lower than that of SULT1A3 (Teubner et al., 2007). The expression of SULTs in the 

intestine was highest in the ileum, compared to the other intestinal segments, and was localized 

in the differentiated enterocytes implicating these enzymes in the elimination of bioactive food-

borne ingredients (Teubner et al., 2007).  

1.3.2 Regulation of physiological metabolism 

 SULTs regulate the activity and homeostasis of a wide range of small endogenous substrates, 

including cholesterol, bile acids, steroids, neurotransmitters, and thyroid hormone. Sulfonated 

molecules act as signaling molecules or reservoirs that can regulate biological processes in 

various tissues. For example, DHEA-sulfate that is synthesized in the brain is involved in brain 

development and functions (Baulieu, 1998; Maninger et al., 2009), whereas the sulfonation of 

DHEA in the adrenal gland plays an important role in steroid biosynthesis (Rainey et al., 2002). 

Contrary to SULTs, sulfatases are enzymes that hydrolyze the ester bonds to release the 

sulfonate group. These enzymes are required to maintain the homeostasis of endogenous 

molecules, which are substrates of the SULT enzymes. Since the focus of this dissertation is on 

the role of SULTs in liver and intestine, the following are a few examples of endogenous molecules 

that are metabolized by SULTs expressed in these tissues: 

a. Sulfonation of thyroid hormones 

 Thyroid hormone is required for normal development and is a major regulator of 

metabolism in adults (Mullur et al., 2014). Sulfonation is an important pathway through 

which 3,5,3′,5′-tetraiodo-l-thyronine (T4) is irreversibly inactivated by stimulation of inner 

ring deiodination (Visser, 1994). However, sulfonated 3,5,3’-triiodothyronine (T3) is a 

reservoir for T3 hormone that can be hydrolyzed by tissue sulfatases as needed (Visser, 
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1996). The T4 metabolite 3,3′-diiodothyronine (3, 3′-T2), is also extensively metabolized by 

SULT enzymes (Richard et al., 2001). SULT1A1, SULT1A3, SULT1B1, SULT1C2, and 

SULT1E1, which are expressed in the liver, have been implicated in the sulfonation of 

thyroid hormones, including T3 and T4 (Wang et al., 1998; Kester et al., 1999; Li et al., 

2000).  

b. Sulfonation of steroids and bile acids 

 Estrogens play essential roles in regulating cellular metabolism and growth but can also 

contribute to carcinogenesis in hormone-sensitive tissues, such as breast and uterus (Zhu 

and Conney, 1998; Mauvais-Jarvis et al., 2013). The activity of the estrogen hormone 

forms, including the two most biologically active forms, estrone (E1) and 17b-estradiol 

(E2), is mediated through the estrogen receptor (ER). The sulfonated estrogens cannot 

bind to the ER, and thus they are rendered inactive. Although estrogen sulfonation in 

human tissues can be catalyzed by several SULTs, SULT1E1 is the primary enzyme that 

can sulfonate estrogens at nanomolar concentrations (Falany et al., 1995). Other steroids, 

including DHEA, androgens, and cholesterol, are primarily metabolized by SULT2A1 and 

SULT2B1 enzymes that have high sulfonation capacity towards DHEA and cholesterol, 

respectively. Since SULT2B1 expression is low in the hepatic and intestinal tissues 

(Meloche and Falany, 2001), SULT2A1 is the major enzyme that can conjugate steroids 

and bile acids in these tissues, and thus facilitate their excretion through bile (Teubner et 

al., 2007; Riches et al., 2009).  

1.3.3 Bioactivation of promutagens 

 The conjugation of a sulfonate provides a good leaving group that generates reactive 

intermediates that can interact with DNA, RNA, and protein, inducing cancer and other diseases 

(Banoglu, 2000). Watabe et al. was the first study that reported the bioactivation of a 

procarcinogen (i.e., 7-hydroxymethyl-12-methylbenz[a]anthracene) by sulfonation (Watabe et al., 
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1982). SULT1 and SULT2 enzymes can bioactivate a wide range of promutagens that include 

drugs (e.g., tamoxifen), environmental contaminants (e.g., hydroxymethyl polycyclic aromatic 

hydrocarbons and N-hydroxy arylamines), and food-derived procarcinogens (Chou et al., 1995; 

Banoglu and King, 2002; Yasuda et al., 2007; Srivastava et al., 2010; Beyerle et al., 2015). For 

example, human SULT1A1 and SULT1A2 can bioactivate N-OH-PhIP, which is a very mutagenic 

compound that forms while cooking meat (Ozawa et al., 1994). Additionally, SULT1C enzymes 

are also capable of bioactivating various phenols, drugs, and procarcinogens, such as N-hydroxy- 

2- acetylaminofluorene (N-OH AAF) and large benzylic alcohols derived from alkylated polycyclic 

hydrocarbons (Her et al., 1998; Sakakibara et al., 1998; Meinl et al., 2008a). 

1.4 The role of SULTs during liver development 

 The liver is the largest internal organ, and it performs vital metabolic, endocrine, and exocrine 

functions. The xenobiotic-metabolizing capacity of the human liver varies throughout 

development. There are xenobiotic-metabolizing enzymes that are expressed during early life and 

these likely influence the susceptibility of the developing human to the effects of drugs and 

environmental chemicals (Barker et al., 1994; Miki et al., 2002; Duanmu et al., 2006; Hines, 2007; 

Sadler et al., 2016) and regulate biological processes, such as steroid biosynthesis and estrogen 

and thyroid hormone homeostasis, which are essential during development. 

1.4.1 Liver development 

 The process of liver development is evolutionarily conserved, and it begins during 

embryogenesis, when the endoderm and mesoderm layers emerge from a primitive streak. The 

endoderm is an uncommitted germ layer that gives rise to a primitive gut tube that is patterned 

into three domains: foregut, midgut, and hindgut. Hepatogenesis is initiated in the foregut domain, 

where the inhibition of the Wnt and fibroblast growth factor 4 (FGF4) pathways is required to 

establish its identity and progenitors. The hepatic mesenchyme, which originates from the 

mesoderm, secretes various transcription factors and signaling molecules that promote liver 
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development. The secretion of FGFs and bone morphogenetic proteins (BMPs) occurs from the 

heart and septum transversum mesenchyme (STM), respectively, and induces hepatic 

specification in the ventral foregut endoderm. The hepatic endoderm cells, known as 

hepatoblasts, are bipotent progenitor cells that differentiate into two cell types: (1) the 

parenchymal cells that are the major cell type (70-80%) in the liver, known as hepatocytes, and 

(2) the cells that are localized near the portal vein and are involved in the ductal plate remodeling, 

known as biliary epithelial cells (BECs) or cholangiocytes. The hepatoblasts migrate from the 

endoderm and invade the STM, thereby triggering liver bud formation. During liver bud growth, 

the hepatoblasts begin to differentiate into hepatocytes or BECs, and both cell types differentiate 

further during fetal development to reach maturity during the perinatal period. The other liver cell 

types, including stromal cells, stellate cells, and Kupffer cells are derived the from mesoderm 

(Zorn, 2008).  

 The expression of xenobiotic-metabolizing enzymes in the fetal liver is localized in the 

hematopoietic stem cells (HSCs) and embryonic hepatocytes. Several CYPs, including CYP1A1 

and CYP3A5, are expressed at low levels in the HSCs whereas the expression of multiple GSTs, 

including GSTM1, M2, M4, and GSTP1, and SULT1A1 was reported to be much higher in the 

HSCs (Richard et al., 2001; Shao et al., 2007). However, the expression of many xenobiotic-

metabolizing enzymes, such as CYP3A7, CYP1A2, and SULT2A1, seems to be restricted to the 

fetal hepatocytes (Barker et al., 1994; Shao et al., 2007). 

1.4.2 SULT expression profiles during liver development  

 Experimental and epidemiological studies suggest that exposures to environmental stressors 

during prenatal periods can increase the risk for developing diseases, such as cancer and 

metabolic syndrome, later in life (Murray et al., 2007; Drake et al., 2010; La Merrill et al., 2013; 

Merlo et al., 2014; Shen et al., 2014). The impact of xenobiotic exposures on the developing fetus 

is modulated by the detoxification enzymes that are expressed in mother and fetus. Because 

many of the xenobiotic-metabolizing enzymes are differentially expressed during liver maturation, 
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the metabolic capacity of the fetal liver is different from that of the adult liver. Previous studies 

established that xenobiotic-metabolizing enzymes and transporters are differentially expressed 

throughout development, and three major patterns of hepatic expression have been described: 

(1) class I, where expression is highest in prenatal liver, (2) class II, where expression is relatively 

constant from prenatal to adult life, and (3) class III, where expression is highest in adult liver 

(Hines, 2013). 

 The presence of xenobiotic-metabolizing enzymes was detected starting from the first 

trimester. For example, CYP3A5 and CYP3A7 protein and activity as well as flavin 

monooxygenase 1 (FMO 1) protein were detected starting from week 8 of gestation (Yang et al., 

1994; Lacroix et al., 1997; Koukouritaki et al., 2002; Stevens et al., 2003). However, the 

expression of many enzymes involved in xenobiotic metabolism is not well-developed in the 

prenatal period compared to the postnatal period (Hines, 2008).  

 Unlike other families of xenobiotic-metabolizing enzymes, SULTs are widely expressed in 

human tissues during development and, therefore, more likely to be responsible for modulating 

the effects of chemical exposures and regulating cellular processes in human fetuses. Previous 

studies detected SULT expression in the developing liver and demonstrated that some of these 

enzymes are preferentially expressed in the fetal stage (Barker et al., 1994; Richard et al., 2001; 

Stanley et al., 2005; Duanmu et al., 2006). Using a panel of 235 human liver cytosols prepared 

from donors ranging in age from early gestation to 18 years, our lab previously reported that 

SULT1E1, 1A1, and 2A1 proteins are expressed with class I, II, and III developmental patterns, 

respectively (Duanmu et al., 2006). Additional evidence indicated that SULT1A3, SULT1C2, and 

SULT1C4 are also preferentially expressed in fetal liver (Cappiello et al., 1991; Her et al., 1997; 

Sakakibara et al., 1998; Stanley et al., 2005). While SULT1B1 appears to be primarily expressed 

in adult tissues, SULT1B1 mRNA was detected in several fetal tissues, including small intestine 

and liver, and its protein was identified in fetal small intestine only (Stanley et al., 2005; Riches et 

al., 2009). 
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1.4.3 The beneficial and harmful effects of SULTs in the immature liver 

 Exposure to environmental stressors during fetal life can cause genomic and/or epigenomic 

alterations that lead to disease later in life. The expression of SULTs during vulnerable life stages, 

especially early developmental periods, positions these enzymes to be one of the major defense 

systems that protect the fetus from xenobiotic exposures by promoting their excretion. However, 

many molecules can interact with SULTs as substrates or inhibitors, altering the metabolic 

capability of the fetal liver, increasing the mutagenicity of the parent compounds, or perturbing 

homeostasis by interfering with the metabolism of endogenous molecules. For example, cigarette 

compounds, such as β-naphthylamine, catechol, and caffeic acid, which are sulfonated by 

SULT1A1, SULT1A2, SULT1A3, and SULT1C4, reduced the sulfonation capacity of SULT1A1 

towards 17b estradiol, thereby disrupting estrogen homeostasis (Yasuda et al., 2007). Sulfonation 

of cigarette compounds was also shown to increase the mutagenicity of these compounds, which 

could contribute to the initiation of carcinogenesis (Banoglu, 2000; Wang and James, 2006). An 

example of a SULT inhibitor is 2,6-dichloro-4-nitrophenol, which can inhibit the activity of 

SULT1E1, affecting the state of estrogen and thyroid hormone equilibrium (Wang and James, 

2006).  

 SULTs expressed in fetal liver can metabolize endogenous molecules that have critical 

developmental functions. DHEA sulfate, which is generated by SULT2A1 in the fetal liver and 

adrenal gland, circulates in the blood and is desulfonated by the sulfatases that are expressed in 

the placenta to be used as a precursor for estrogen biosynthesis, indicating that sulfonated DHEA 

plays an essential role in regulating estrogen biosynthesis during the prenatal stages (Barker et 

al., 1994). Another critical hormone that is regulated by SULTs during fetal development is thyroid 

hormone, which is sulfonated by hepatic SULT2A1 (Strott, 2002).  
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1.5 Regulation of SULTs by lipid- and xenobiotic-sensing transcription factors in  

hepatic and intestinal tissues  

 Nuclear receptors, which are a superfamily of transcription factors, are known regulators of 

genes that play essential roles in regulating cellular processes and xenobiotic metabolism 

(Mangelsdorf and Evans, 1995; Urquhart et al., 2007; Runge-Morris and Kocarek, 2009). These 

transcription factors can bind as homo- or heterodimers to specific consensus sequences, also 

known as response elements, and they are classified into four classes based on their mechanism 

of action (Fig. 1.2). Many nuclear receptors are activated by endogenous (e.g., oxysterols, bile 

acids, and estrogen) and exogenous compounds (e.g., drugs and environmental toxicants). 

Constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), 

peroxisome proliferator-activated receptor alpha, delta, and gamma (PPARa, d, and g), pregnane 

X receptor (PXR), and vitamin D receptor (VDR) are lipid- and xenobiotic-sensing nuclear 

receptors that form heterodimers with retinoid X receptor (RXR). They were identified as 

regulators of many detoxification enzyme systems, including SULTs, in human and rodent tissues 

(Runge-Morris, 1997; Assem et al., 2004; Jiang et al., 2005; Alnouti and Klaassen, 2008; 

Sueyoshi et al., 2011; Runge-Morris et al., 2013). These nuclear receptors are expressed in 

various tissues, including liver and intestine, and they regulate expression of SULTs in a species-

, tissue-, and gender- (in case of rodents) specific manner (examples will be provided throughout 

this section). The mechanisms underlying the regulation of several human SULTs in hepatic and 

intestinal cells by CAR, FXR, PPARa, PXR, and VDR were detailed by a number of studies using 

animal and human experimental models.  

 CAR was initially identified as a regulator of CYP2B expression in mouse and human liver 

(Honkakoski and Negishi, 1998; Honkakoski et al., 1998; Sueyoshi et al., 1999). Assem et al. 

demonstrated that CAR can co-regulate MRP4, an ABC transporter, and SULT2A1 in mouse liver 

and human hepatic HepG2 cells (Assem et al., 2004). CAR can regulate murine SULT2A1 
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transcription by binding to a FXR, LXR, and PXR response element, which is only found in the 5’-

flanking region of the rodent SULT2A1 genes (Saini et al., 2004). More recent studies found that 

CAR activators induced the expression of several SULTs, including SULT1E1, in rodent, but not 

in human, liver (Ding et al., 2006; Alnouti and Klaassen, 2008; Radovic et al., 2010; Ghose et al., 

2011; Sueyoshi et al., 2011; Aleksunes et al., 2012). In colon adenocarcinoma Caco-2 cells, 

activated CAR induced SULT2A1 mRNA (Echchgadda et al., 2007). Using chromatin 

immunoprecipitation (ChIP) and DNase I footprinting analyses, a composite cis-acting response 

element located at nt -131 to -155 and nt -167 to -190 relative to the SULT2A1 transcription start 

site that can bind to CAR and a proximal hepatocyte nuclear factor 4α (HNF4α)-binding site 

between nt -63 to -35 was identified (Echchgadda et al., 2007). 

FXR is a lipid-sensing nuclear receptor that is activated by endogenous molecules, such 

as bile acids, and can regulate genes involved in maintaining cholesterol and bile acid 

homeostasis (Makishima et al., 1999; Sinal et al., 2000). FXR activation induced the expression 

of rat SULT2A1 by binding to a response element located in the 5’-flanking region of the gene, 

between nucleotides -169 and -193 (Song et al., 2001). However, chenodeoxycholic (CDCA)-

mediated FXR activation suppressed SULT2A1 expression in mouse liver and HepG2 cells 

(Miyata et al., 2006). FXR was also recently reported to suppress SULT1E1 expression in HepG2 

cells by inhibiting the binding of PPARγ coactivator 1α to HNF4α (Wang et al., 2017).  

Like FXR, LXR is activated by lipid molecules, primarily sterols, and can regulate similar 

physiological functions (Kalaany and Mangelsdorf, 2006). Uppal et al. reported that LXR can 

induce SULT2A1 expression in mouse liver by binding to the same FXR and CAR response 

element described above, thereby preventing lithocholic acid (LCA) toxicity. LXR activation 

induced SULT2A1 expression in primary human hepatocytes and SULT1E1 expression in mouse 

liver and HepG2 cells (Gong et al., 2007; Uppal et al., 2007; Falany et al., 2009; Li et al., 2009). 

In colorectal adenocarcinoma LS180 cells, ligand-activated LXR upregulated the expression of 

SULT1C2 and 1C3 (Rondini et al., 2014). 
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 The three PPARs, PPARα, PPARδ (also called PPARβ), and PPARγ, regulate essential 

cellular pathways, including energy metabolism, lipid metabolism, and inflammation (Seedorf and 

Aberle, 2007; Su et al., 2007; Pawlak et al., 2015). While PPARa has been established as a 

regulator of xenobiotic-metabolizing enzymes, little is known about the role of PPARδ and PPARγ 

in xenobiotic metabolism (Waxman, 1999; Runge-Morris and Kocarek, 2009; Runge-Morris et al., 

2013; Thomas et al., 2013). Rat SULT1E1 protein was decreased in rats fed with PPARa 

activators (Fan et al., 2004). Injecting mice intraperitoneally with ciprofibrate (PPARa activator) 

suppressed SULT1E1, SULT2A, and SULT1C mRNA in female mice only, but these effects were 

not observed in female mice with nullified PPARa expression (Alnouti and Klaassen, 2008; 

Aleksunes et al., 2012). We previously reported that PPARa upregulates human, but not rat, 

SULT2A1 transcription through a peroxisome proliferator response element (PPRE) in the distal 

5’-flanking region of the SULT2A1 gene (Fang et al., 2005). Our recent analysis indicated that 

activation of PPARα and PPARγ increased SULT1C3 mRNA in LS180 cells (Rondini et al., 2014). 

 PXR was initially identified as a xenobiotic-sensing transcription factor that plays an essential 

role in the regulation of xenobiotic detoxification enzymes, such as CYP3A4 (Lehmann et al., 

1998). Later studies demonstrated that ligand-activated PXR can also control endogenous 

metabolic pathways in the liver (Dussault et al., 2003; Ihunnah et al., 2011). PXR is activated by 

secondary bile acids and sterols as well as a variety of exogenous compounds, such as rifampicin 

and hyperforin (Lehmann et al., 1998; Moore et al., 2000). Echchgadda et al. initially determined 

that PXR activated the transcription of Sult2a1 in mouse livers that were injected intraperitoneally 

with pregnenolone 16 α-carbonitrile (PCN), a rodent PXR activator (Echchgadda et al., 2004a). 

While feeding mice with LCA suppressed Sult2a1 expression in a PXR-independent manner, 

intraperitoneal administration of LCA, which bypasses the gut, induced Sult2a1 through the 

activation of PXR (Owen et al., 2010). In human hepatocytes, we identified two PXR-responsive 

elements in the SULT2A1 promoter region that are bound by HNFa in the absence of a PXR 
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activator (Fang et al., 2007). However, treatment of human primary hepatocytes with rifampicin 

suppressed SULT2A1 mRNA by interfering with the positive effect of HNF4a on SULT2A1 

transcription (Fang et al., 2007). PXR was also established as a regulator of SULT1E1 

transcription in primary human hepatocytes and the hepatocellular carcinoma cell line Huh7 

(Kodama et al., 2011). This study revealed that HNF4a enhances the expression of SULT1E1 by 

binding to a distal enhancer sequence located between nt -1000 and -901 relative to the 

transcription start site of the gene and that ligand-activated PXR targets HNF4a to decrease its 

binding to the enhancer sequence, thereby repressing SULT1E1 expression (Kodama et al., 

2011). In contrast, SULT2A1 expression was upregulated by PXR activation in Caco-2 cells, and 

this effect was mediated by a response element that can bind PXR and CAR (as mentioned earlier 

in this section), located in the SULT2A1 promoter region (Echchgadda et al., 2007). Treatment of 

intestinal LS180 cells with rifampicin induced SULT1C2 mRNA and protein and SULT1C3 mRNA 

(Rondini et al., 2014). 

 VDR is involved in the maintenance of calcium and phosphate homeostasis and it also plays 

a role in regulating key cellular pathways, including differentiation, proliferation, and inflammation 

(Lin and White, 2004). It is activated by the hormone form of vitamin D3 (1α,25-dihydroxyvitamin 

D3), secondary bile acids (e.g., LCA), and dietary compounds such as curcumin (Makishima et 

al., 2002). The involvement of VDR in regulation of detoxification enzymes was initially 

established by multiple studies that identified VDR as a regulator of CYP2 and CYP3 expression 

(Schmiedlin-Ren et al., 2001; Thummel et al., 2001; Drocourt et al., 2002; Thompson et al., 2002). 

Ligand-activated VDR was also reported to induce the expression of mouse, rat, and human 

SULT2A1 in HepG2 and Caco-2 cells and mouse hepatocytes (Echchgadda et al., 2004b). VDR 

activation induced rodent Sult2a1 expression by binding to the same response element that is 

recognized by CAR, PXR, and FXR (Echchgadda et al., 2004b). In 2006, Song et al. located a 

composite response element in the 5’-flanking region of human SULT2A1 that consists of 
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VDR/RXR and CAAT/enhancer binding protein (C/EBP) binding sites that mediate the induction 

of SULT2A1 by VDR in Caco-2 cells (Song et al., 2006). Rondini et al. recently reported that 

SULT1C2 transcription is induced by VDR activation in LS180 cells (Rondini et al., 2014). Barrett 

et al. then demonstrated that the inducible effect of VDR on SULT1C2 mRNA is mediated through 

a cis-acting VDR response element found ~5 kb upstream of the transcription start site of the 

SULT1C2 gene that was identified by computational analysis and was predicted to be a PXR-

binding site (Barrett et al., 2016). 

 Aryl hydrocarbon receptor (AhR) is a xenobiotic-sensing transcription factor that belongs to the 

Per Arnt Sim (PAS) domain family and is responsible for activating a battery of genes that control 

a broad range of functions, including xenobiotic detoxification as well as cellular proliferation, 

differentiation, and apoptosis (Marlowe and Puga, 2005). AhR is activated by exogenous 

compounds, most notably halogenated and aromatic compounds such as 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene, and endogenous molecules, such as 

tryptophan metabolites and low-density lipoprotein (McMillan and Bradfield, 2007b; McMillan and 

Bradfield, 2007a). In the canonical pathway, AhR forms a complex with the aryl hydrocarbon 

receptor nuclear translocator (ARNT) and together they bind to consensus sequences located in 

the promoter region of their target genes, such as CYP1A1 (Reyes et al., 1992). AhR activation 

was reported to have a suppressive effect on SULT1A1 expression in rat and mouse primary 

hepatocytes, and suppressed SULT2A expression in rat hepatocytes only (Runge-Morris and 

Kocarek, 2005). TCDD treatment of HepG2 cells and female mice suppressed SULT1E1 mRNA 

(Puga et al., 2000). 
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There are four types of nuclear receptors that are classified based on their mechanism of action. 
Type I nuclear receptors (e.g., estrogen receptor) reside in the cytoplasm and/or nucleus and 
are associated with chaperone proteins, including heat shock protein 90. The binding of a ligand 
(e.g., estrogen) triggers the translocation of the protein complex to the nucleus, where the 
chaperone proteins are released and the homodimer is formed. The homodimer will bind to a 
specific consensus sequence to induce or suppress the transcription of target genes. Type II 
receptors (e.g., thyroid hormone receptor; TR) are found in the nucleus bound to their DNA 
consensus sequences as heterodimers with RXR. While some unliganded type II receptors 
have no impact on the transcription of their target genes, several others (e.g., TR) can suppress 
transcription of target genes by interacting with corepressors (e.g., NCoR and SMRT). After the 
binding of a ligand, type II nuclear receptors induce the transcription of the target genes by 
interacting with coactivators that have intrinsic histone acetyltransferase activity, such as cyclic 
AMP response element binding protein binding protein (CBP) and p300. Type III and type IV 
receptors function relatively in the same way as type I receptors. However, type III receptors 
recognize a different type of response element (direct instead of inverted repeat) and type IV 
receptors (not shown in the figure) bind as monomers to half-site response element.  
Figure taken with permission from (Sever and Glass, 2013). 
  

Figure 1.2: Mechanisms of action of nuclear receptors. 
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1.6 Models of human liver development 

 Differences in the metabolic capacity of the liver between species have been well-documented, 

and these variations are mostly because of differences in the expression and sequences of 

xenobiotic-metabolizing enzymes, including SULTs (Honma et al., 2001; Shiratani et al., 2008; 

Choughule et al., 2015) . For example, mouse and rat SULT1B1 are very homologous, sharing 

87.6% of their amino acid sequence, but human SULT1B1 shares only 72.3% and 74% with the 

mouse and rat proteins, respectively (Saeki et al., 1998; Wang et al., 1998). In terms of 

expression, rodent SULT1B1 is primarily expressed in the liver, whereas in humans its role 

appears to be more prominent in the intestine (Dunn and Klaassen, 1998; Saeki et al., 1998; 

Riches et al., 2009). SULT1Cs also exhibit variations in their sequences across species. While, 

SULT1C2 shares greater than 90% sequence similarity with its apparent mouse, rat, and rabbit 

orthologs human SULT1C3 and SULT1C4 share less than 80% amino acid sequence similarity 

with any of the known SULT1C proteins in the three animal species (Runge-Morris and Kocarek, 

2013). Inter-species variation in SULT sequences are reflected in differences in the orthologs’ 

substrate specificities. This is exemplified by SULT1A1, where human SULT1A1 and its 

presumed mouse, rat, and rabbit orthologs share 79-85% amino acid sequence similarity and a 

preference for sulfonation of phenolic substrates. However, human SULT1A1 has much higher 

activity than the animal enzymes toward troglitazone and 2-amino-4’-hydroxy-1-methyl-6-

henylimidazo[4,5-b]pyridine (Honma et al., 2001). Therefore, the use of human in vitro models 

and biospecimens is necessary to understand the role of SULTs in the human liver. 

 In vitro models have been utilized to study chemical metabolism, mechanisms of toxicity, and 

enzyme kinetics (Iwatsubo et al., 1997; Soldatow et al., 2013). These models were also used to 

study physiological functions (e.g., proliferation and differentiation of liver cells) and 

pathophysiological conditions (e.g., non-alcoholic fatty liver disease) of the liver (Hino et al., 1999; 

Rumin et al., 1999; Yalcin et al., 2013). In this dissertation we used hepatic HepaRG cells and 
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primary cultures of fetal hepatocytes to examine SULT expression and regulation in immature 

and differentiated liver cells. 

 HepaRG is a widely used human cell line that was derived from an Edmonson grade I 

differentiated hepatocellular carcinoma (Martins-Filho et al., 2017). These cells function 

essentially as bipotent hepatic progenitor cells that can be differentiated in culture into mature 

hepatocyte-like and cholangiocyte-like cells, and they express many of the xenobiotic-

metabolizing enzymes, transporters, and nuclear receptors that are expressed in normal human 

hepatocytes (Aninat et al., 2006; Hoekstra et al., 2013; Laurent et al., 2013). Differentiated 

HepaRG cells exhibit characteristics and gene expression profiles similar to those of adult 

hepatocytes, whereas proliferating and confluent HepaRG cells behave more like fetal 

hepatocytes. For example, CYP3A7 and pyruvate kinase muscle isozyme, which are abundantly 

expressed in fetal hepatocytes, are more abundantly expressed in undifferentiated HepaRG cells 

while CYP3A4 and CYP2E1, which are preferentially expressed in adult hepatocytes, are more 

highly expressed in differentiated HepaRG cells (Tsuji et al., 2014; Bucher et al., 2016). These 

cells have been used to study hepatocellular differentiation, xenobiotic metabolism and toxicity, 

and development of liver diseases (Sharanek et al., 2015; Nunn et al., 2016; Rodrigues et al., 

2016; Sayyed et al., 2016; Xia et al., 2016).  

 Cultured fetal hepatocytes are another useful model to examine physiological processes and 

xenobiotic metabolism during prenatal periods because they can maintain hepatocyte-like traits, 

such as morphology of the cells and gene expression patterns (Carpenter et al., 1996; Lazaro et 

al., 2003; Chinnici et al., 2015; Tobita et al., 2016). Several studies demonstrated that xenobiotic-

metabolizing enzymes that are expressed in the fetal liver, including CYP3A7, CYP3A5, CYP3A4 

and CYP2E1, were detected in human and rodent primary fetal hepatocytes (Kremers et al., 1981; 

Mathis et al., 1986; Carpenter et al., 1996; Chinnici et al., 2015). 
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1.7 Objective of dissertation, hypothesis, and specific aims 

 The overall objective of this dissertation is to improve our understanding of the physiological 

roles of the SULT1 and SULT2 family members in the developing liver as well as adult intestines. 

Previous findings published by our lab and other groups indicated that several of the SULTs are 

preferentially expressed in prenatal periods and that SULT expression is modulated by lipid- and 

xenobiotic-sensing pathways. Based on these reports, we hypothesize that: (1) SULT1 and 

SULT2 enzymes have markedly different developmental expression profiles and several of these 

enzymes are preferentially expressed in the early stages of human liver development and the 

undifferentiated HepaRG cells; (2) SULT1 and SULT2 expression is regulated by lipid- and 

xenobiotic-sensing transcription factors in confluent and differentiating HepaRG as well as 

primary cultures of fetal hepatocytes; (3) the expression of the SULT1C4 transcript variants varies 

throughout human liver development; and (4) SULT1C3 transcription is regulated by PPARg in 

human LS180 intestinal cells, and its effect is mediated by a functional PPRE located in the 5’-

flanking region of the SULT1C3 gene. These hypotheses will be tested by the following specific 

aims: 

Specific aim 1: Determine the developmental expression patterns of SULT mRNA and protein in 

the developing liver.  

Specific aim 2: Identify the SULT1C4 transcript variants that are expressed in developing liver. 

Specific aim 3: Examine the temporal expression profile of SULT mRNA and protein in confluent 

and differentiated HepaRG cells and evaluate the role of lipid- and xenobiotic-sensing 

transcription factors in the regulation of SULT mRNA in these two stages. 

Specific aim 4: Determine the mechanism underlying the transcriptional regulation of SULT1C3 

by PPARg. 
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CHAPTER 2: REGULATION OF CYTOSOLIC SULFOTRANSFERASES IN MODELS OF 
HUMAN HEPATOCYTE DEVELOPMENT 

2.1 Introduction 

 Cytosolic sulfotransferases (SULTs) are expressed during early life and, therefore, 

metabolize endogenous and xenobiotic chemicals during development. Several human SULTs, 

including SULT1A1, SULT1A3, SULT1C2, SULT1E1, and SULT2A1, were found to be abundantly 

expressed in the early stages of development (Cappiello et al., 1991; Barker et al., 1994; Stanley 

et al., 2005; Duanmu et al., 2006; Ekstrom and Rane, 2015), but little is currently known about 

the regulation of individual SULTs in the developing human liver. Previous studies demonstrated 

that the expression of SULT1 and SULT2 enzymes is regulated by lipid- and xenobiotic-sensing 

transcription factors (discussed in chapter 1.4). In this study we (1) examined the expression of 

SULT1 and SULT2 enzymes in primary cultures of human fetal hepatocytes and the HepaRG 

model of liver cell differentiation, (2) investigated the role of AhR, CAR, FXR, LXR, PPARa, 

PPARg, PXR, and VDR in the regulation of the SULT1 and SULT2 mRNA in human fetal 

hepatocytes as well as confluent and differentiating HepaRG cells, (3) studied the role of AhR 

signaling in regulating the expression of SULT1C2, SULT1C4, SULT1E1, SULT2A1, CYP3A4, 

and CYP3A7 during hepatocyte differentiation, (4) examined the mechanism underlying the 

regulation of SULT1C4 by LXR, PXR, and VDR. 

2.2 Materials and Methods 

Materials: Cell culture media and supplements (except insulin) and Lipofectamine 2000 were 

purchased from Invitrogen (Carlsbad, CA). Human recombinant insulin (Novolin R) was 

purchased from Novo Nordisk Pharmaceuticals, Inc. (Princeton, NJ). 3-[2-[2-Chloro-4-[[3-(2,6-

dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]benzoic acid (GW4064, 

purity ³ 97%) and 2-[[4-[2-[[(cyclohexylamino)carbonyl](4 cyclohexylbutyl)amino]ethyl]phenyl] 

thio]-2-methylpropanoic acid (GW7647, purity ³ 99%) were purchased from Tocris Biosciences 

(Minneapolis, MN). Chenodeoxycholate (CDCA, purity ³ 97%), 6-(4-chlorophenyl)imidazo[2,1-
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b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO, purity ³ 98%), rosiglitazone 

(purity ³ 98%), rifampicin (purity ³ 97%), 1α,25-dihydroxyvitamin D3 (VitD3, purity ³ 99%), 3-[3-

[[[2-chloro-3-(trifluoromethyl)phenyl]methyl](2,2-diphenylethyl)amino]propoxy] benzeneacetic 

acid hydrochloride (GW3965, purity ³ 98%), and dimethyl sulfoxide (DMSO) were purchased from 

Sigma-Aldrich (St. Louis, MO), and 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD, purity ~98%) was 

purchased from Midwest Research Institute (Kansas City, MO). Targets of these drugs is listed in 

Appendix E. Oligonucleotides were purchased from Integrated DNA Technologies (IDT, 

Coralville, IA). Other materials were obtained from the sources indicated below. 

HepaRG culture and treatments: HepaRG cells were obtained from Biopredic International under 

a Material Transfer Agreement with INSERM-Transfert (Paris, France). Cells were plated into 6-

well plates at a density of 250,000 cells/well in growth medium consisting of Williams’ Medium E 

(WME) supplemented with 10% fetal bovine serum (FBS), 5 μg/ml insulin, 0.1 µM triamcinolone 

acetonide, 100 U/ml penicillin, and 100 μg/ml streptomycin. Fourteen days after plating, the 

medium was changed to differentiation medium, consisting of growth medium with 2% DMSO, 

and the cells were incubated for 14 more days, with medium replenishment every 2-3 days. 

Differentiated HepaRG cells were then incubated in treatment medium, consisting of growth 

medium with 2% FBS but without DMSO, 72 hours prior to treatment. Confluent (10 days post-

plating) and differentiated (after 72-hour incubation with treatment medium) HepaRG cells were 

treated with vehicle (0.1% DMSO or 0.1% ethanol) or a transcription factor activator for 48 hours 

at the concentrations indicated in the figure legends (treatments were renewed after 24 hours). 

The concentrations used for the various agonists were selected based on previous 

demonstrations that these concentrations produce optimal regulation of known target genes as 

well as some of the SULTs (Fang et al., 2007; Rondini et al., 2014; Barrett et al., 2016; Dubaisi 

et al., 2016). 
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 AhR knockout (KO) HepaRG cells were purchased from Sigma-Aldrich. Around 250,000 

AhR KO cells were plated in 6-well plates and maintained in the same media used with the wild-

type (WT) HepaRG cells.  

Primary human fetal hepatocyte culture and treatments: Experiments with human fetal 

hepatocytes were done in collaboration with Dr. Alejandro Soto-Gutierrez from the University of 

Pittsburgh. De-identified tissues were obtained from Magee Women’s Hospital (Pittsburgh, PA) 

and the University of Washington Department of Pediatrics, Division of Genetic Medicine, 

Laboratory of Developmental Biology (Seattle, WA) after obtaining written informed consent by a 

protocol approved by the Human Research Review Committee of the University of Pittsburgh 

(Honest broker approval number HB015 and HB000836). Human fetal hepatocytes were isolated 

from fetal livers obtained after the termination of pregnancy performed at 12–22 weeks of 

gestation (Appendix D). Primary human fetal hepatocytes were isolated by digesting the tissue in 

Eagle’s Minimum Essential Medium (Lonza, Walkersville, MD) containing 0.5 mg/ml of 

collagenase (Type XI, Sigma-Aldrich) on a laboratory shaker for 40 minutes. Viability was 

assessed by trypan blue exclusion and was routinely >85%. Hepatocytes were plated at a density 

of 130,000 cells/cm2 on type I rat tail collagen-coated 12-well plates (Corning, Corning, NY). Cells 

were cultured overnight with Dulbecco’s Modified Eagle Medium (Life Technologies, Carlsbad, 

CA) containing 100 U/ml penicillin, 100 μg/ml streptomycin, 0.1 µM insulin (Sigma-Aldrich), and 

5% bovine serum albumin (Life Technologies). Hepatocytes were then treated with vehicle (0.1% 

DMSO or 0.1% ethanol) or a transcription factor activator for 48 hours as indicated in the legend 

to Fig. 2.3 (treatments were renewed after 24 hours). 

Human intestinal organoids (HIOs): These organoids were generated from pluripotent stem cells 

as described previously (McCracken et al., 2011). Briefly, H9 embryonic stem cells (ESCs; Wicell 

International Stem Cell Bank, Wicell Research Institute) were grown in feeder free conditions on 

hESC-qualified, matrigel-coated nunclon delta surface 6-well plates and incubated at 5% CO2 and 

37°C. Cells were passaged onto new plates every 4–5 days using dispase (1mg/mL) and treated 
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with Activin A (R&D Systems) for 3 days to generate endoderm. To promote the patterning of the 

endoderm into CDX2+ that spontaneously form floating, 3-dimensional aggregates called 

spheroids, FGF4 (R&D Systems) and Chir99021 (STEMGENT), a Wnt agonist used in place of 

recombinant Wnt3a, were added to the medium. Spheroids were collected and plated into 

droplets of Matrigel (BD Biosciences/Corning), a laminin-rich basement membrane complex. 

Spheroids were cultured in media containing EGF (100ng/mL, R&D Systems), R-Spondin 2, and 

Noggin (100ng/mL, R&D Systems) for 1 week and then in media containing only EGF and R-

Spondin 2 as they grew into HIOs.  

RNA isolation and analysis: Total RNA was isolated from HepaRG cells, freshly isolated and 

cultured human fetal hepatocytes using the Purelink RNA Mini Kit (Life Technologies). RNA was 

also isolated from the ESCs, definitive endoderms (DE), hindgut (HG; treated with FGF for 4 and 

6 days), and HIOs using the same kit. RNA levels were quantified using the TaqMan Gene 

Expression Assays (listed in Appendix F) from Life Technologies. In each PCR reaction a 2 μl of 

diluted cDNA (1:2), a TaqMan probe with a FAM or VIC dye label on the 5’ end and minor groove 

binder (MGB), and Universal PCR Master Mix (Applied Biosystems, Foster City, CA). The reaction 

was performed using the StepOnePlus Real-Time PCR System (Applied Biosystems). Standard 

thermocycling parameters were 94°C for 10 minutes, and 40 cycles of 95°C for 15 seconds and 

60°C for 1 minute. Data were normalized to a reference gene (indicated in the legend of each 

figure) and to the mean ΔCT of the control (both are indicated in the figure legends) to calculate 

ΔCT and ΔΔCT, respectively, and then the 2−ΔΔCT method was used to quantify the relative 

changes in gene expression (Livak and Schmittgen, 2001). 

Western blot analysis: HepaRG cells were plated into 6-well plates at a density of 250,000 cells 

per well and harvested after 5, 9, 14, 19, 26, or 30 days for preparation of whole cell lysates, as 

previously described (Rondini et al., 2014). Protein concentrations were determined using the 

BCA Protein Assay Kit (ThermoFisher Scientific, Waltham, MA). Proteins (20-30 μg) were 

resolved on 12.5% sodium dodecyl sulfate-polyacrylamide gels, transferred onto polyvinylidene 
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difluoride membranes, and incubated for one hour with blocking buffer [2.5% non-fat dry milk in 

Tris-buffered saline with 0.1% Tween 20 (Sigma-Aldrich)]. The membranes were then incubated 

overnight at 4°C with mouse monoclonal anti-SULT1C2 (clone OTI5A4; Origene, Rockville, MD) 

diluted 1:5,000, anti-SULT1E1 (clone E-12; Santa Cruz Biotechnology, Dallas, TX) diluted 

1:2,000, or anti-SULT2A1 (clone OTI4D7; Origene) diluted 1:5,000. SULT1C2 and SULT2A1 

antibodies detect only the human SULTs whereas SULT1E1 antibody can detect the human, 

mouse, and rat SULTs. Membranes were then incubated with horseradish peroxidase-conjugated 

goat anti-mouse IgG (sc-2005; Santa Cruz Biotechnology) diluted 1:20,000 (for membranes 

probed with anti-SULT1E1 or anti-SULT2A1) or 1:25,000 (for membranes probed with anti-

SULT1C2). Enhanced chemiluminescence and a FluorChem E detection system (ProteinSimple, 

San Jose, CA) were used to visualize the immunoreactive bands. The blots were then incubated 

in stripping buffer (60 mM Tris-HCl, 70 mM sodium dodecyl sulfate, and 100 mM β-

mercaptoethanol) at 37°C to remove the antibodies and re-probed with b-actin antibody (clone 

AC15; Sigma-Aldrich) diluted 1:40,000 followed by horseradish peroxidase-conjugated goat anti-

mouse IgG diluted 1:100,000. Band densities were quantified with ImageJ32 software (Schneider 

et al., 2012). 

RACE analysis: This analysis was performed using the SMARTer RACE 5’/3’ kit (Takara Bio USA 

Inc., Mountain View, CA) and RACE-ready cDNA that was prepared from RNA of Caco-2 and 

HepaRG cells. A SULT1C4-specific reverse primer was designed for the 5’-RACE analysis 

(Appendix G). The PCR reactions were run on a 0.8% agarose gel and the bands were recovered 

and ligated into the pGEM-T Easy plasmid (Promega Corporation, Madison, WI). Individual clones 

were sequenced at the Wayne State University Applied Genomics Technology Center. 

Preparation of SULT1C4 reporter plasmids: Genomic DNA was isolated from MCF10A human 

breast epithelial cells using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA). Genomic 

DNA (100 ng), primer sets predicted to amplify ~2.2 Kb (nucleotides -1890:+350)  and ~0.3 Kb 
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(nucleotides -290:+53) fragments containing the core promoter, and the HotStarTaq DNA 

polymerase from Qiagen were used to PCR amplify two fragments from the SULT1C4 5’-flanking 

region. These fragments were ligated into the XhoI and HindIII site of the promoterless 

pGL4.10[luc2] firefly luciferase reporter plasmid (Promega Corporation, Madison, WI). The 

reporter plasmid containing the 0.3 Kb fragment was used as the backbone to prepare a series 

of reporters (A through I) that each contain ~ 2 Kb (A, B, E, F, G, H, I) or ~ 1 Kb (C and D) 

fragments from the SULT1C4 5’-flanking region starting from nt -1630 up until nt -15,174 (a 

schematic representation of these fragments is shown in Fig 2.11A). The fragments were 

amplified by PCR from genomic DNA and inserted into the KpnI and XhoI sites upstream of 

SULT1C4 core-promoter fragment in the pGL4.10 vector using the In-Fusion HD Cloning Kit 

(Clonetech, Mountain View, CA). All primer sequences are listed in Appendix G. The sequences 

of all SULT1C4 clones were confirmed using the services of the Applied Genomics Technology 

Center at Wayne State University. 

HepG2 culture: HepG2 cells were maintained in Dulbecco's Modified Eagle Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 μg/ml streptomycin, 

and non-essential amino acid mix (all purchased from Life Technologies, Grand Island, NY). Cells 

were incubated in a humidified atmosphere of 95% air, 5% CO2 at 37°C. 

Transient transfection analysis and treatments: Approximately 100,000 HepaRG cells/ well were 

plated in 12-well plates and maintained in 1 ml of supplemented WME. At day 9 post-seeding 

cells were transfected with a complex containing 4μl Lipofectamine 2000, 1.6μg of a firefly 

luciferase reporter containing one of SULT1C4 fragments (shown in Fig. 2.11A), and 1ng pRL-

CMV (Promega) per well diluted in 400μl Opti-MEM (Life Technologies). To transiently transfect 

HepG2 cells, around 250,000 cells were plated in 12-well plates and maintained in 1 ml of 

supplemented DMEM. 24-48 hours post-plating, cells were transfected with the same complex 

used when transfecting HepaRG cells. 1 ng of PXR-pSG5 (provided by Dr. Steven Kliewer, 

University of Texas Southwestern, Dallas, TX) or VDR-pcDNA3.1 (Barrett et al., 2016) expression 
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plasmids were cotransfected into HepG2 cells when evaluating the effect of PXR or VDR, 

respectively, on SULT1C4 transcription. Luciferase reporters containing LXR-responsive element 

(LXRE) , PXR-responsive regions (referred to as xenobiotic-responsive enhancer module, XREM; 

provided by Dr. Bryan Goodwin, GlaxoSmithKline, Research Triangle Park, NC), or VDR-

responsive element (VDRE) that are located in the promoter region of SREBP1c (Barrett et al., 

2013), CYP3A4 (Goodwin et al., 1999), or SULT1C2 gene (Barrett et al., 2016), respectively, 

were used as positive controls. 24 Hours after transfection of HepaRG and HepG2 cells, fresh 

supplemented medium was added containing either DMSO (0.1% final concentration), GW3965 

(10 µM), rifampicin (10 µM), or VitD3 (0.1 µM). Treatment medium was changed after 24 hours. 

Cells were lysed and collected after 48 hours of treatment, and firefly and Renilla luciferase 

activities were measured using the Dual-Luciferase Reporter Assay System (Promega) and a 

Glomax Luminometer (Promega). For each sample, the firefly luciferase value was normalized to 

the corresponding Renilla luciferase value. 

Statistical analysis: All experiments, except where indicated in the figure legends, were repeated 

at least three times. Gene expression data are presented as means ± SEM (with three or more 

independent experiments) or range (with two independent experiments) relative to control. 

Statistical analyses were performed using Prism (version 6; GraphPad, La Jolla, CA). Data were 

analyzed using two-tailed unpaired t-tests or one- or two-way analysis of variance followed by 

Tukey’s post hoc test, with p<0.05 considered significantly different. 

2.3 Results 

2.3.1 Expression and regulation of SULTs in primary cultures of human fetal hepatocytes. To 

study the regulation of SULTs in a model of human fetal liver, hepatocytes were isolated from five 

fetal livers, placed into primary culture, and then treated for 48 hours with a vehicle (0.1% DMSO 

or 0.1% ethanol) or panel of nuclear receptor activators. SULT mRNA levels were then measured, 

together with CYP3A7 and CYP3A4 for comparison, since these genes are well-known to be 
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predominantly expressed in fetal or adult liver, respectively. Because several SULT1A1 transcript 

variants (TVs) have been described (5 confirmed mRNAs, NCBI SULT1A1 UniGene Hs.567342), 

we used two different TaqMan Gene Expression Assays to measure TV1 separately, since this 

variant is described as being most abundant, and TV5 separately, since the transcription start site 

of this variant is distinct from that of TVs 1-4 (i.e., more than 10 Kb upstream). The mRNA levels 

measured in the DMSO-treated hepatocytes were considered as estimates of basal expression. 

As expected, CYP3A7 was highly expressed [as estimated by cycle threshold (Ct) values] in the 

cultured fetal hepatocytes (Ct= 23.6) while CYP3A4 expression was minimal (Ct= 32.7) (Fig. 2.1). 

Of the SULTs, SULT1C4 was most highly expressed (Ct= 25.9), followed by SULT1E1 (Ct= 26.4), 

while SULT1A1 TV1 (Ct= 28.2), SULT2A1 (Ct= 28.4), and SULT1C2 (Ct= 28.6) mRNA levels were 

somewhat lower but still readily detectable. SULT1A1 TV5 (Ct= 35.8), SULT1B1 (Ct= 30.7), 

SULT1C3 (Ct= 36.6), and SULT2B1 (Ct= 32.6) mRNA levels were low or barely detectable (Fig. 

2.1). To evaluate the impact of placing freshly isolated human fetal hepatocytes into primary 

culture on SULT expression, the ratios of the mRNA levels in cultured relative to freshly isolated 

hepatocytes were calculated. Culturing the fetal hepatocytes reduced the expression of SULT1C2 

(by 82%), SULT1E1 (92%), and SULT2A1 (94%) but increased the expression of SULT1A1-TV5 

(3-fold), SULT1B1 (14-fold), and SULT2B1 (6-fold) (Fig. 2.2). CYP3A7 and CYP3A4 expression 

was also decreased by primary culture, by approximately 91% and 38%, respectively (Fig. 2.2). 

 Treatment of the human fetal hepatocyte cultures with a panel of nuclear receptor 

activators produced several effects that were reproducibly seen across the five preparations. 

Treatment with the LXR agonist GW3965 (10 μM) significantly increased the amount of SULT1A1 

TV5 by an average of 7.2-fold (relative to DMSO-treated control) and treatment with the VDR 

agonist VitD3 (0.1 μM) significantly increased SULT1C2 and SULT2B1 mRNA content by an 

average of 2.2-fold and 2.0-fold, respectively (relative to ethanol-treated control). VitD3 treatment 

also increased CYP3A4 and CYP3A7 mRNA levels (by 2.7- and 2.9-fold, respectively). While not 

significant, treatment with the PPARα agonist GW7647 (10 μM) or PPARγ agonist rosiglitazone 
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(1 μM) increased the amount of SULT2A1 mRNA by 1.9-fold, while treatment with the FXR agonist 

GW4064 (10 μM) decreased SULT2A1, CYP3A4, and CYP3A7 mRNA levels (by 78 to 85%). 

None of the treatments produced clear changes in the levels of SULT1A1 TV1, SULT1B1, 

SULT1C4, or SULT1E1 mRNA (Fig 2.3).  
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Freshly isolated hepatocytes from five fetal livers were incubated in medium containing 0.1% 
DMSO for 48 hr, after which the cells were harvested and SULT, CYP3A4, CYP3A7, and 
GAPDH (used as normalization gene) mRNA levels were measured using TaqMan Gene 
Expression Assays. Each bar represents the mean relative mRNA level ± SEM for the five 
independent experiments compared to SULT1C4, which had the highest expression of the 
SULTs. Relative CYP3A4 and 3A7 mRNA levels are shown for comparison.  
Figure taken with permission from (Dubaisi et al., 2018). 
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Figure 2.1: SULT, CYP3A4, and CYP3A7 expression in primary cultured human fetal 
hepatocytes. 
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mRNA levels from three preparations of freshly isolated fetal hepatocytes and the 
corresponding DMSO-treated primary cultured fetal hepatocytes were measured using TaqMan 
Gene Expression Assays. mRNA levels were normalized to 18S RNA and are expressed as 
ratios of the mRNA levels in cultured to uncultured hepatocytes. 
Figure taken with permission from (Dubaisi et al., 2018). 
 
   

Figure 2.2: Effects of placing freshly isolated human fetal hepatocytes into primary 
culture on SULT, CYP3A4, and CYP3A7 expression. 
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Freshly isolated hepatocytes from five fetal livers were incubated in medium containing 0.1% 
DMSO, 0.1% ethanol (EtOH), 10 μM rifampicin (Rif), 10 μM GW3965, 10 μM GW4064, 10 μM 
GW7647, 1 μM rosiglitazone (Rosi), or 0.1 μM VitD3 for 48 hr, after which the cells were 
harvested and SULT, CYP3A4, CYP3A7, and GAPDH (used as normalization gene) mRNA 
levels were measured. Each bar represents the mean relative mRNA level ± SEM compared to 
control (0.1% ethanol for VitD3; 0.1% DMSO for other agonists) for the five independent 
experiments. *Significantly different from control, p< 0.05. 
Figure taken with permission from (Dubaisi et al., 2018). 
  

Figure 2.3: Effects of nuclear receptor agonists on SULT, CYP3A4, and CYP3A7 
expression in primary cultured human fetal hepatocytes. 
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2.3.2 Temporal expression of SULTs in HepaRG cells. The approximately one-month protocol for 

converting proliferating cultures of HepaRG cells into a mixed population of hepatocyte-like and 

cholangiocyte-like cells consists of growing the cells to confluency, maintaining them at 

confluency for several more days, and then incubating them in DMSO-containing medium (Fig. 

2.4A). To characterize the temporal expression of the SULTs in HepaRG cells as they progressed 

through the differentiation process, cells were plated and then harvested every 2-3 days for mRNA 

measurements (Fig. 2.4B). Again, CYP3A4 and CYP3A7 mRNA levels were measured for 

comparison. CYP3A4 expression was low in the proliferating cultures, increased somewhat during 

the confluent phase, and then further increased during the differentiation phase (Fig. 2.4B). By 

comparison, CYP3A7 expression was highest during the confluent phase and then decreased 

during the differentiation phase (Fig. 2.4B). The SULT2A1 expression profile was comparable to 

that for CYP3A4, with highest expression occurring in the differentiated cells (Fig. 2.4B). Most of 

the other SULTs were expressed with patterns resembling those for CYP3A7 (i.e., SULT1B1, 

SULT1C2, SULT1C3, SULT1C4, and SULT1E1), where expression was highest in the confluent 

cultures and then reduced in the differentiated cultures (Fig. 2.4B). The expression of SULT1A1 

transcripts and SULT2B1 did not vary  

markedly throughout the differentiation process (Fig. 2.4B). SULT1A1 TV1 mRNA was abundant, 

while SULT1A1 TV5 and SULT2B1 mRNAs were low.  

 The protein levels for three of the SULTs (SULT1C2, SULT1E1, and SULT2A1) showing 

the two major expression patterns that were observed at the mRNA level were also measured at 

several time points. Consistent with the patterns observed at the mRNA level, SULT1C2 and 

SULT1E1 protein contents were highest in the confluent cells and then decreased after 

differentiation was induced by DMSO, while SULT2A1 protein reached its highest level in the 

differentiated HepaRG cells (Fig. 2.5). 
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(A) HepaRG differentiation protocol showing proliferating, confluent, and differentiated phases 
and times when treatments were begun. (B) HepaRG cells were plated (day 0) and harvested 
on the indicated days for measurement of mRNA levels. mRNA levels were normalized to the 

A 

Figure 2.4: Temporal expression of SULTs, CYP3A4, and CYP3A7 in HepaRG cells. 
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levels measured on day two (i.e., first harvest day). The data show the expression patterns of 
eight cytosolic SULTs as well as CYP3A4 and CYP3A7 from the proliferative to the confluent 
phase (open bars) and then through the differentiation phase (gray bars). The cycle threshold 
(Ct) values for the various genes measured on day 14 (i.e., time of highest expression for 
several of the genes) are shown on the graphs as estimations of their relative expression levels. 
Data were normalized to GAPDH and are shown as means ± SEM from three independent 
experiments. *Significantly different from day 14 mRNA level, p<0.05. 
Figure taken with permission from (Dubaisi et al., 2018). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HepaRG cells were plated (day 0) and harvested on the indicated days for measurement of 
SULT1C2, SULT1E1, and SULT2A1 protein levels by Western blot analysis. b-actin was used 
as the loading control. The images shown are from one representative experiment. For each 
protein, the last lane contains a standard consisting of whole cell lysate prepared from SULT 
cDNA-transfected HEK293 cells (EV, empty vector-transfected HEK293 cells). Band densities 
were quantified using image J, and data are shown normalized to the protein levels measured at 
day 5. Each bar represents the mean ± SEM from three independent experiments. *Significantly 
different from day 14 (P< 0.05). 
Figure taken with permission from (Dubaisi et al., 2018).  
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Figure 2.5: SULT1C2, SULT1E1, and SULT2A1 immunoreactive protein levels in HepaRG 
cells harvested at different time points. 
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2.3.3 Temporal expression of SULTs in a model of intestinal development. We examined the 

temporal expression of SULT mRNA at different time points during the process of differentiating 

ESCs into HIOs, which mimic fetal intestinal cells (Finkbeiner et al., 2015). Most SULTs, including 

SULT1B1, SULT1C2, SULT1C4, SULT1E1. SULT2A1, and SULT2B1 mRNA was readily 

detectable in the HIOs (Appendix H). In addition, SULT1C2, SULT1C4, and SULT2B1 expression 

was readily detectable in the ESCs and increased during the differentiation process (Appendix 

H). 

2.3.4 Effects of lipid- and xenobiotic-sensing receptor activators on SULT expression in HepaRG 

cells. To identify nuclear signaling pathways that regulate SULT expression in the HepaRG model 

of human liver cell differentiation, cells were treated for 48 hours with activators of the AhR and 

several lipid- and xenobiotic-sensing nuclear receptors that have been reported to regulate SULT 

expression in other human cell systems (Song et al., 2001; Higashi et al., 2004; Fang et al., 2005; 

Jiang et al., 2005; Fang et al., 2007; Fu et al., 2011; Rondini et al., 2014; Barrett et al., 2016; 

Dubaisi et al., 2016). Both confluent and differentiated HepaRG cells were treated to consider the 

possibility that cells in the two stages could differ in their responses due to differences in their 

content of transcriptional machinery. However, measurement of marker transcripts for the various 

nuclear signaling pathways indicated that all treatments activated their targeted transcription 

factors by comparable amounts in confluent and differentiated cells (Figs. 2.6 and 2.7). 

 As shown in Fig. 2.8, treatment of confluent cells with the AhR agonist TCDD (0.01 μM) 

significantly decreased the mRNA levels of all SULTs that were measured, except for SULT1C3, 

and decreases of at least 50% were seen for SULT1A1 TV5 (69% decrease), SULT1B1 (51%), 

SULT1C4 (77%), SULT1E1 (86%), and SULT2A1 (86%). Treatment with the CAR agonist CITCO 

(1 μM) also significantly decreased the mRNA levels of several SULTs (SULT1B1, SULT1C3, 

SULT1C4, SULT1E1, and SULT2B1), although these decreases were generally modest and none 

exceeded 38%. Treatment with the PXR agonist rifampicin (10 μM) significantly increased 

SULT1C4 mRNA content (by 2.8-fold) and decreased the mRNA levels of SULT1B1 (63% 
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decrease), SULT1C3 (68%), SULT1E1 (63%), and SULT2A1 (62%). GW3965 treatment (LXR 

agonist, 10 μM) significantly increased the amount of SULT1A1 TV5 (by 1.7-fold) and SULT1C4 

mRNA (1.9-fold) and decreased the mRNA levels of SULT1C3, SULT1E1, SULT2A1, and 

SULT2B1, with the reduction of SULT1C3 mRNA being especially pronounced (>90% decrease). 

GW4064 treatment (FXR agonist, 1μM) significantly decreased the expression of several SULTs 

(SULT1B1, SULT1C2, SULT1C3, SULT1C4, SULT1E1, SULT2A1), with the largest decreases 

seen for SULT1C3 (64%) and SULT2A1 (68%). Treatment with CDCA (50 μM), another FXR 

agonist, produced effects that were comparable to those of GW4064, with the largest effects being 

reduction of SULT1C3 (60% decrease) and SULT2A1 (55%) mRNA levels. GW7647 treatment 

(PPARα agonist, 10 μM) significantly increased SULT1B1 mRNA content, although the increase 

was only 1.2-fold, and decreased SULT1C2, SULT1C3, and SULT2B1 mRNA levels, with the 

largest reduction seen for SULT1C3 (81%). The PPARγ agonist rosiglitazone (10 μM) had little 

effect on SULT expression, other than to decrease SULT1C3 mRNA content (72% decrease). 

Treatment with VitD3 (VDR agonist, 0.1 μM) significantly increased the amounts of SULT1C2, 

SULT1C4, and SULT2B1 mRNA by 1.4- to 1.8-fold and decreased SULT1A1 TV1, SULT1B1, 

SULT1C3, SULT1E1, and SULT2A1 mRNA levels, with the largest reduction seen for SULT1C3 

(68% decrease).  

 Fig. 2.9 shows the effects of the treatments on SULT expression in differentiated HepaRG 

cells. Many of the effects were comparable to those seen in the confluent cultures, including: (1) 

TCDD treatment decreased the expression of most SULTs; (2) CITCO treatment had relatively 

little effect on SULT expression; (3) rifampicin treatment significantly increased SULT1C4 mRNA 

content (by 6.3-fold) and decreased SULT1B1, SULT1C3, and SULT2A1 expression; (4) GW3965 

treatment significantly increased SULT1A1 TV5 and SULT1C4 mRNA levels and markedly 

reduced (by >90%) SULT1C3 mRNA content; levels of SULT2A1 and SULT2B1 mRNA were also 

decreased; (5) GW4064 and CDCA treatments significantly decreased the mRNA levels of 

several SULTs, including SULT1C2, SULT1C3, SULT1E1, and SULT2A1; (6) GW7647 treatment 
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modestly but significantly increased SULT1B1 mRNA content and decreased the amount of 

SULT1C3 mRNA; (7) rosiglitazone treatment decreased SULT1C3 expression; and (8) VitD3 

treatment significantly increased SULT1C2 and SULT2B1 mRNA levels (SULT1C4 mRNA 

content was also ~2-fold higher on average, although this effect was not significant in the 

differentiated cells) and decreased SULT1A1 TV1, SULT1B1, SULT1C3, and SULT2A1 mRNA 

levels. Differences that were noted between the differentiated and confluent HepaRG cells were: 

(1) TCDD treatment significantly decreased SULT1C2 mRNA content only in confluent cells and 

increased SULT1C3 mRNA only in differentiated cells; (2) rifampicin treatment significantly 

decreased SULT1E1 expression only in confluent cells and induced SULT2B1 in differentiated 

cells; and (3) VitD3 treatment significantly decreased SULT1E1 expression only in confluent cells. 
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Ten days after plating, confluent HepaRG cells were incubated in treatment medium containing 
0.1% DMSO, 0.1% ethanol (EtOH), 0.01 µM TCDD (AhR agonist), 1 μM CITCO (CAR), 10 μM 
rifampicin (Rif, PXR), 10 μM GW3965 (LXR), 1 μM GW4064 (FXR), 50 µM CDCA (FXR), 10 μM 
GW7647 (PPARα), 10 μM rosiglitazone (Rosi, PPARγ), or 0.1 μM VitD3 (VDR) for 48 hr, after 
which cells were harvested and the mRNA levels of a known target gene for each agonist and 
TATA-box binding protein (used as normalization gene) were measured. Each bar represents 
the mean relative mRNA level ± SEM compared to control (0.1% ethanol for VitD3; 0.1% DMSO 
for all other agonists) for three independent experiments. Significantly different from control, 
*p<0.05, **p<0.01, ***p<001. SREBP1, sterol regulatory element binding protein 1; SHP, short 
heterodimer partner; PLIN2, perilipin 2. 
Figure taken with permission from (Dubaisi et al., 2018). 
  

Figure 2.6: Effects of lipid- and xenobiotic-sensing receptor agonists on target gene 
expression in confluent HepaRG cells. 
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Four weeks after plating, differentiated HepaRG cells were incubated with treatment medium 
alone for 72 hour and then treatment medium containing 0.1% DMSO, 0.1% ethanol (EtOH), 
0.01 µM TCDD (AhR agonist), 1 μM CITCO (CAR), 10 μM rifampicin (Rif, PXR), 10 μM 
GW3965 (LXR), 1 μM GW4064 (FXR), 50 µM CDCA (FXR), 10 μM GW7647 (PPARα), 10 μM 
rosiglitazone (Rosi, PPARγ), or 0.1 μM VitD3 (VDR) for 48 hr, after which cells were harvested 
and the mRNA levels of a known target gene for each agonist and TATA-box binding protein 
(used as normalization gene) were measured. Each bar represents the mean relative mRNA 
level ± SEM compared to control (0.1% ethanol for VitD3; 0.1% DMSO for all other agonists) for 
four independent experiments. Significantly different from control, *p<0.05, **p<0.01, ***p<001. 
SREBP1, sterol regulatory element binding protein 1; SHP, short heterodimer partner; PLIN2, 
perilipin.  
Figure taken with permission from (Dubaisi et al., 2018). 
  

Figure 2.7: Effects of lipid- and xenobiotic-sensing receptor agonists on target gene 
expression in differentiated HepaRG cells. 
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Ten days after plating, confluent HepaRG cells were incubated in treatment medium containing 
0.1% DMSO, 0.1% ethanol, 0.01 µM TCDD, 1 μM CITCO, 10 μM rifampicin (Rif), 10 μM 
GW3965, 1 μM GW4064, 50 µM CDCA, 10 μM GW7647, 10 μM rosiglitazone (Rosi), or 0.1 μM 
VitD3 for 48 hr, after which cells were harvested and SULT and TATA-box binding protein (used 
as normalization gene) mRNA levels were measured. Each bar represents the mean relative 
mRNA level ± range (for rosiglitazone treatment only) or SEM compared to control (0.1% 
ethanol for VitD3; 0.1% DMSO for all other agonists) for two (for rosiglitazone) or three 
independent experiments. *Significantly different from control, p<0.05. 
Figure taken with permission from (Dubaisi et al., 2018). 
  

Figure 2.8: Effects of lipid- and xenobiotic-sensing receptor activators on SULT mRNA 
levels in confluent HepaRG cells. 
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Four weeks after plating, differentiated HepaRG cells were incubated with treatment medium 
alone for 72 hour and then treatment medium containing 0.1% DMSO, 0.1% ethanol, 0.01 µM 
TCDD, 1 μM CITCO, 10 μM rifampicin (Rif), 10 μM GW3965, 1 μM GW4064, 50 µM CDCA, 10 
μM GW7647, 10 μM rosiglitazone (Rosi), or 0.1 μM VitD3 for 48 hr, after which cells were 
harvested and SULT and TATA-box binding protein (used as normalization gene) mRNA levels 
were measured. Each bar represents the mean relative mRNA level ± SEM relative to control 
(0.1% ethanol for VitD3; 0.1% DMSO for all other agonists) from three independent experiments 
(except for SULT1A1/TV1) for the CITCO, GW4064, CDCA, GW7647, and Rosi treatment 
groups, where each bar represents mean ± range from two independent experiments). 
*Significantly different from control, p<0.05. 
Figure taken with permission from (Dubaisi et al., 2018). 
 

Figure 2.9: Effects of lipid- and xenobiotic-sensing receptor activators on SULT mRNA 
levels in differentiated HepaRG cells. 
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2.3.5 Examining the role of AhR in the regulation of SULTs, CYP3A4, and CYP3A7 mRNA in 

differentiating HepaRG cells. Over the past two decades several studies reported that ligand-

independent AhR activity regulates physiological processes during development in multiple 

tissues, including liver (Mitchell and Elferink, 2009). Our data shown in figures 2.8 and 2.9 

indicated that activation of AhR by TCDD suppresses the expression of most SULT1 and SULT2 

enzymes in differentiating HepaRG cells. To investigate the role of AhR in the regulation of SULT 

expression during liver cell differentiation without any stimulation by exogenous ligand, we defined 

the temporal expression profile of several SULTs and CYPs in an AhR KO HepaRG cell line, 

where AhR activity is completely absent. We evaluated the expression of SULTs and CYPs that 

are primarily expressed in prenatal liver specimens (will be presented in chapter 3) and confluent 

HepaRG cells (i.e., SULT1C2, SULT1C4, SULT1E1, CYP3A7) or differentiated cells (i.e., 

SULT2A1 and CYP3A4) as well as CYP1A1, which is a well-known target of AhR. The temporal 

expression patterns of SULT1C2, SULT1E1, SULT2A1, CYP3A4, and CYP3A7 in WT and AhR 

KO HepaRG cells were comparable (Fig. 2.10). However, the mRNA levels of these genes were 

considerably lower in the absence of AhR in the differentiating HepaRG cells, particularly in the 

proliferative and confluent stages (between day 5 and 14). Abolishing AhR signaling reduced the 

expression of SULT1C2, SULT1C4, SULT1E1, and SULT2A1 by 72-86%, 34-60%, 24-57%, and 

69-92%, respectively in the proliferating and confluent cells. CYP3A4 and CYP3A7 mRNA also 

decreased by 30-96% and 67-96%, respectively, between days 5 and 14 in the absence of AhR 

(Fig. 2.10). The expression of CYP1A1 was relatively the same in AhR KO and WT HepaRG cells 

(Fig. 2.10). 

2.3.6 The mechanism underlying the transcriptional regulation of SULT1C4 by LXR, PXR, and 

VDR. There are currently no known regulators of SULT1C4 expression in human cells. To 

examine the mechanism underlying the induction of SULT1C4 mRNA by LXR, PXR, and VDR 

(as shown in Fig 2.8 and 2.9), we evaluated fragments from the 5’-flanking region of SULT1C4 

for their responsiveness to LXR, PXR, and VDR activation. To determine the transcription start 
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site of the SULT1C4 gene, we performed 5’-RACE analysis using RACE-ready cDNA from Caco-

2 and HepaRG cells and a SULT1C4-specific reverse primer placed within exon 1 (listed in 

Appendix G). Using sequence and alignment analysis of 23 5’-RACE clones prepared from 

HepaRG and Caco-2, we determined that the 5’-end of most clones started at approximately the 

same site. Our analysis indicated that the transcription start site of 5’-RACE clones was 46 bp 

downstream of the reported transcription site for NM_006588.3 and NM_001321770.1. The 

translation start site was located in exon 1, as previously indicated by Freimuth et al. (Freimuth et 

al., 2000). The translation start site was 393 and 191 bp downstream of the transcription start site 

for 18 and 4 clones, respectively.   

 We then transfected a series of constructs containing ~1 or 2 Kb fragments (2.2 Kb and 

fragments A to I) from the region upstream of the transcription start site that were attached to the 

SULT1C4 core promoter (shown in figure 2.11A) into HepG2 cells, which are relatively easier to 

transfect compared to HepaRG cells. To compensate for the low expression of PXR and VDR in 

HepG2 cells, we cotransfected the cells with expression plasmids that express one of the two 

transcription factors (PXR-pSG5 and VDR-pcDNA3.1, respectively) as well as empty expression 

plasmids that were used as controls. LXR activation by 10 µM GW3965 upregulated the luciferase 

activity of the positive control SREBP1c-LXRE reporter in HepG2 cells (Fig. 2.11B and 2.12), but 

it did not have any effect on the activity of any of the SULT1C4 reporter constructs. Similarly, 

treatment with Rif (10µM) or VitD3 (0.1µM) also induced the luciferase activity of the control 

CYP3A4-PXRE and SULT1C2-VDRE reporter constructs in HepG2 cells cotransfected with a 

PXR and VDR expression plasmid, respectively, without altering the luciferase activity of any of 

the SULT1C4 fragments (Fig. 2.11C, 2.11D, 2.13, and 2.14).  

 Because the effects of LXR and PXR agonist treatments, which produced the most notable 

upregulation of SULT1C4 mRNA, were observed in HepaRG cells (Fig. 2.8 and 2.9), we 

transfected the SULT1C4 reporter plasmids into HepaRG cells and examined their 
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responsiveness to the LXR and PXR agonists. Because SULT1C4 is primarily expressed in 

confluent HepaRG cells (Fig. 2.4), the transfections and treatments were done during confluency 

(day 9-12). Treatment with 10 µM GW3965 or Rif upregulated the luciferase activity of the control 

reporters, SREBP1c-LXRE and CYP3A4-XREM, respectively (Fig. 2.15 and 2.16). However, 

neither of the treatments had any effect on the luciferase activity of the SULT1C4 reporter 

plasmids (Fig. 2.15 and 2.16).  
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WT and AhR KO HepaRG cells were plated (day 0) and harvested on the days indicated in the 
figure for measurement of mRNA levels. mRNA levels were normalized to the levels measured 
on day two of the WT cells. The data show the expression patterns of SULT1C2, SULT1C4, 
SULT1E1, and SULT2A1 as well as CYP1A1, CYP3A4, and CYP3A7 from the proliferative to 
the confluent phase (open bars) and then through the differentiation phase (black bars). Data 
were normalized to TBP and are shown as mean ± range from two independent experiments 
that were each performed in duplicates (n=4).  
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Figure 2.10: Temporal expression profiles of SULTs, CYP1A1, CYP3A4, and CYP3A7 in 
the absence of AhR signaling in HepaRG cells. 
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 (A) Schematic representation of the fragments from the 5’-flanking region of SULT1C4 that 
were used in the transfection analysis. HepG2 cells were transiently transfected with the 
SULT1C4 2.2 Kb (nt -1819:+350) luciferase reporter construct or an empty pGL4.10 [luc2]. Cells 
were also transfected with LXRE/SREBP1c (B), XREM/CYP3A4 (C), and VDRE/SULT1C2 (D) 
that were used as positive controls. 24 hours after transfection cells were treated with DMSO 
(0.1%), or the nuclear receptor agonist (B) GW3965 (10 µM), (C) rifampicin (Rif; 10 µM), and 
(D) VitD3 (0.1 µM) for 48 hours. Cells treated with Rif or VitD3 were cotransfected with a (C) 
PXR-pSG5 expression plasmid or empty pSG5 plasmid and (D) VDR-pcDNA3.1 expression 
plasmid or empty pcDNA3.1 plasmid. The cells were then harvested for measurement of 
luciferase activities. Each column represents the mean± S.D. of normalized (Firefly/Renilla) 
luciferase measurements relative to DMSO control (n = 3 wells per treatment) from one cell 
culture experiment.  
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Figure 2.11: The responsiveness of the SULT1C4 2.2Kb reporter construct to LXR, PXR, 
and VDR agonist in HepG2 cells. 
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Cells were transiently transfected with the series of reporter plasmids that contain fragments A 
through H that span ~13 Kb region upstream the transcription start site of SULT1C4. Cells were 
also transfected with an empty pGL4.10 [luc2], a core promoter, or LXRE/SREBP1c reporter 
constructs (used as controls). 24 hours after transfection, cells were treated with GW3965 (10 
µM) for 48 hours and then harvested for measurement of luciferase activities. Each column 
represents the mean± S.D. of normalized (Firefly/Renilla) luciferase measurements relative to 
DMSO control (n = 3 wells per treatment) from one cell culture experiment.  
  

Figure 2.12: The responsiveness of SULT1C4 reporter constructs to LXR activation in 
HepG2 cells. 
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Cells were transiently transfected with a series of reporter constructs containing fragments A 
through I that span ~15 Kb region upstream the transcription start site of SULT1C4. Cells were 
also transfected with an empty pGL4.10 [luc2], a core promoter, or XREM/CYP3A4 reporter 
constructs (used as controls) and PXR-pSG5 or an empty pSG5 expression plasmid. 24 hours 
after transfection, cells were treated with Rif (10 µM) and then harvested for measurement of 
luciferase activities. Each column represents the mean± S.D. of normalized (Firefly/Renilla) 
luciferase measurements relative to DMSO control (n = 3 wells per treatment) from two cell 
culture experiment.  

Figure 2.13: The responsiveness of a series of SULT1C4 reporter constructs to PXR 
activation in HepG2 cells. 
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Cells were transiently transfected with a series of reporter plasmids that contain fragments A 
through I that span ~15 Kb region upstream the transcription start site of SULT1C4. Cells were 
also transfected with an empty pGL4.10 [luc2], a core promoter, or VDRE/SULT1C2 reporter 
constructs (used as controls) and cotransfected with a VDR-pcDNA3.1 or an empty pcDNA3.1 
expression plasmid. 24 hours after transfection cells were treated with VitD3 (0.1 µM) and then 
harvested for measurement of luciferase activities. Each column represents the mean± S.D. of 

Figure 2.14: The responsiveness of a series of SULT1C4 reporter constructs to VDR 
activation in HepG2 cells. 
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normalized (Firefly/Renilla) luciferase measurements relative to DMSO control (n = 3 wells per 
treatment) from one cell culture experiment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Confluent cells (day 9) were transiently transfected with the series of reporter constructs that 
contain fragments A through I, spanning ~15 Kb region upstream from the transcription start site 
of SULT1C4. Cells were also transfected with an empty pGL4.10 [luc2], core promoter, or 
LXRE/SREBP1c reporter construct (used as controls). 24 hours after transfection, cells were 
treated with GW3965 (10 µM) for 48 hours and then harvested for measurement of luciferase 
activities. Each column represents the mean± S.D. of normalized (Firefly/Renilla) luciferase 
measurements relative to DMSO control (n = 3 wells per treatment) from two cell culture 
experiment.  
  

Figure 2.15: The responsiveness of a series of SULT1C4 reporter constructs to LXR 
activation in HepaRG cells. 
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Confluent cells (day 9) were transiently transfected with the series of reporter plasmids that 
contain fragments A through I, spanning ~15 Kb region upstream from the transcription start site 
of SULT1C4. Cells were also transfected with an empty pGL4.10 [luc2], core promoter, or 
XREM/CYP3A4 reporter construct (used as controls). 24 hours after transfection, cells were 
treated with Rif (10 µM) for 48 hours and then harvested for measurement of luciferase 
activities. Each column represents the mean± S.D. of normalized (Firefly/Renilla) luciferase 
measurements relative to DMSO control (n = 3 wells per treatment) from two cell culture 
experiment.  
 

Figure 2.16: The responsiveness of a series of SULT1C4 reporter constructs to PXR 
activation in HepaRG cells. 
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2.4 Discussion 

Xenobiotic-metabolizing enzymes exhibit distinct patterns of developmental expression 

(Hines, 2008). Although some detoxification enzymes, such as CYP3A5, CYP3A7, FMO1, and 

SULT1E1, were reported to be expressed during early stages of gestation (Lacroix et al., 1997; 

Koukouritaki et al., 2002; Stevens et al., 2003; Duanmu et al., 2006), the expression of many 

other enzymes matures during later stages of development, including neonatal and postnatal 

periods. Previous studies showed that the expression of various phase I, such as CYP1A2, 

CYP3A4, CYP2C9, CYP2C19, and phase II enzymes, such as UGT1A4, UGT1A6, and UGT2B7, 

increased gradually and reached maximum abundancy during neonatal, infancy, childhood, or 

adulthood periods  (Sonnier and Cresteil, 1998; Strassburg et al., 2002; Stevens et al., 2003; 

Koukouritaki et al., 2004; Bhatt et al., 2018). In this project , we examined the ontogeny of SULT1 

and SULT2 enzymes that are expressed in the human liver and are among the most abundant 

conjugating enzymes in fetal tissues (Coughtrie, 2015). 

There is currently no published information about SULT expression or regulation using in 

vitro models of human liver development. In the current investigation, we used cultures of primary 

fetal hepatocytes to identify regulators of SULT expression during early stages of liver 

development. Placement of fetal hepatocytes into primary culture decreased the expression of 

several SULTs. A notable exception was SULT1B1, which is reported to be the third most highly 

expressed SULT in adult human liver (Riches et al., 2009). SULT1B1 mRNA content increased 

14-fold after the fetal hepatocytes were placed into culture, implying a difference in the 

mechanism(s) controlling basal expression of SULT1B1 relative to other SULTs. 

To identify mechanisms that regulate SULT expression in human fetal hepatocytes, 

primary cultures were treated with several activators of lipid- and xenobiotic-sensing receptors. 

Several significant effects and non-significant trends were observed and are discussed in the 

context of previous findings. VDR activation significantly increased SULT1C2 as well as CYP3A7 

and CYP3A4 mRNA levels. Although liver is not a classical VitD3-responsive organ, VDR is 
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expressed in liver (Berger et al., 1988) and its activation has been shown to increase expression 

of several cytochromes P450 enzymes, including CYP3A4, in primary cultured adult human 

hepatocytes (Drocourt et al., 2002). VDR activation was found to increase SULT1C2 expression 

in LS180 colorectal adenocarcinoma cells (Rondini et al., 2014; Barrett et al., 2016). Also, 

treatment of fetal hepatocyte cultures with an agonist of PPARα (GW7647) or PPARγ 

(rosiglitazone) increased expression of SULT2A1 by approximately 2-fold, whereas treatment 

with the FXR agonist GW4064 suppressed SULT2A1 in the cultured fetal hepatocytes. PPARa 

and FXR were both previously reported to regulate SULT2A1 expression in primary human 

hepatocytes and HepG2 cells, respectively (discussed in chapter 1.5) (Fang et al., 2005; Miyata 

et al., 2006). 

A novel finding in the cultured fetal hepatocytes was that treatment with the LXR agonist 

GW3965 significantly increased expression of SULT1A1 TV5. TV5 is reported to be a rare variant 

that contains a distinct 5'-untranslated region and lacks part of the 5'-coding region, and its 

transcription start site is located more than 10 Kb upstream from that of other SULT1A1 transcripts 

(NCBI information for NM_177536 and SULT1A1 gene). The distinct location of the TV5 promoter 

provides a plausible explanation for the unique regulation of this SULT1A1 variant by LXR, which 

prompts speculation that SULT1A1 TV5 could play a role in sterol metabolism. 

Most studies using HepaRG cells have used differentiated cells as a model to complement 

the use of primary cultured human hepatocytes (Josse et al., 2008; Lubberstedt et al., 2011; 

Gerets et al., 2012; Klein et al., 2015). However, few studies have evaluated the changes in 

xenobiotic-metabolizing enzyme expression that occur as HepaRG cells pass through the stages 

of the differentiation process (Aninat et al., 2006; Hart et al., 2010; Ceelen et al., 2011; Tsuji et 

al., 2014; Bucher et al., 2016), and no studies have determined expression of the individual 

SULTs. We found that SULT1B1, SULT1C2, SULT1C3, SULT1C4, and SULT1E1 mRNA levels 

were highest in confluent HepaRG cells, whereas SULT2A1 RNA levels increased throughout the 

differentiation process. The temporal trends of gene expression, whereby the SULTs that are 
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preferentially expressed in fetal livers and hepatocytes are also preferentially expressed in 

confluent HepaRG cells while the SULT that is preferentially expressed in adult liver and 

hepatocytes is expressed at the highest level in differentiated HepaRG cells, provide additional 

support to the suggestion that HepaRG cells at these stages of the differentiation protocol can 

serve as experimental models of human hepatocyte development. 

We also evaluated the effects of activators of lipid- and xenobiotic-sensing transcription 

factors on SULT expression in HepaRG cells, comparing effects at the confluent and differentiated 

stages. More activator-mediated changes in SULT expression were observed in the HepaRG 

cells than in the primary cultured fetal hepatocytes. However, while there were marked temporal 

changes in SULT expression as the cells underwent differentiation (noted above), most of the 

transcription factor activator-mediated changes were comparable in the confluent and 

differentiated HepaRG cells, indicating that the evaluated nuclear signaling pathways were 

already functional in the confluent cells. As seen in the human fetal hepatocytes, GW3965 and 

VitD3 treatment increased SULT1A1 TV5 and SULT1C2 mRNA levels, respectively, while FXR 

agonists GW4064 and CDCA suppressed SULT2A1 expression. Treatment with GW4064 or 

CDCA also significantly suppressed SULT1E1 expression in confluent HepaRG cells, but 

GW4064 only produced a slight reduction of SULT1E1 mRNA content in primary cultured fetal 

hepatocytes. These data are consistent with the findings of a recent study that reported the 

suppressive effect of FXR on SULT1E1 expression in HepG2 cells (discussed in chapter 1.5) 

(Wang et al., 2017). 

The effects of the PXR agonist rifampicin differed between HepaRG cells and fetal 

hepatocytes. Rifampicin treatment increased SULT1C4 expression and suppressed SULT1E1 

and SULT2A1 in HepaRG cells but not in the fetal hepatocytes. We previously reported that 

rifampicin-mediated PXR activation suppresses hepatic SULT2A1 expression (Fang et al., 2007), 

while the mechanism of PXR-mediated suppression of SULT1E1 was described by Kodama et 

al. (2011). Rifampicin treatment also did not increase CYP3A4 or CYP3A7 expression in the 
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cultured fetal hepatocytes, suggesting that PXR was not functional in these cells. Our findings 

agree with a previous report by Maruyama et al. (2007), who evaluated cytochrome P450 

expression in human fetal liver cells prepared from a pool of six normal human fetal livers (average 

13 weeks of gestation). These cells expressed CYP3A4 and CYP3A7, and treatment with 

dexamethasone, which is an effective agonist of rodent but not human PXR, significantly 

increased CYP3A4 and CYP3A7 mRNA levels (Maruyama et al., 2007). However, treatment of 

the fetal liver cells with rifampicin did not increase CYP3A4 or CYP3A7 expression, and PXR 

mRNA was not detected by RT-PCR (Maruyama et al., 2007). Vyhlidal et al. (Vyhlidal et al., 2006) 

have also reported that PXR expression is lower in fetal relative to postnatal livers. These findings 

demonstrate that although confluent HepaRG cells model some aspects of the fetal hepatocyte, 

the presence of PXR signaling in confluent HepaRG cells and its absence in fetal hepatocytes 

indicates that confluent HepaRG cells do not fully recapitulate all aspects of the fetal hepatocyte, 

at least at the culture and gestation times that were evaluated. 

To date, SULT1C3 mRNA has only been detected in human intestinal tissue and cells 

(Duniec-Dmuchowski et al., 2014). In this study, we detected SULT1C3 mRNA in HepaRG cells, 

mainly at the confluent stage where the mRNA levels were approximately the same as those for 

SULT1C4. SULT1C3 expression was significantly reduced in the HepaRG cells by most of the 

treatments that were evaluated, with almost complete suppression by the LXR agonist GW3965. 

It seems possible that these suppressive effects contribute to the lack of SULT1C3 expression 

that has generally been seen in human liver samples. 

TCDD treatment was also found to suppress the expression of most SULTs in HepaRG 

cells. This finding is consistent with the suppressive effects of AhR agonist treatments on SULT 

expression that we have previously reported in rat hepatocytes (Runge-Morris, 1998) and 

MCF10A human breast epithelial cells  (Fu et al., 2011). Fu et al. previously showed that the 

transcription of SULT1E1 is regulated by confluency in MCF10A cells through a suppressive 

action of AhR, which is more active in the preconfluent cells (Fu et al., 2011). Our preliminary data 
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presented in the current study we showed that the absence of AhR activity in differentiating 

HepaRG cells suppressed, to some extent, SULT1C2, SULT1E1, SULT2A1, CYP3A4, CYP3A7 

mRNA, primarily in the proliferating and confluent cells. We are in the process of developing our 

own AhR KO HepaRG cell model to further examine the role of AhR in regulating SULT, CYP3A4, 

and CYP3A7 expression in the differentiating hepaRG. These results suggest that AhR activity 

could be required to achieve maximal expression of some SULTs and CYPs during the early 

stages of hepatocyte differentiation. 

LXR, PXR, and VDR activation did not have any effect on the luciferase activity of reporter 

constructs covering ~15 Kb of the SULT1C4 5’-flanking region, suggesting that response regions 

for these receptors are located elsewhere in the SULT1C4 gene. 

Several SULTs are expressed in human fetal liver, and thus these enzymes play important 

roles during early life, likely in the metabolism of both endogenous and xenobiotic substrates. This 

study represents the first effort to define patterns of SULT expression in cell culture models of 

human fetal liver and liver cell differentiation and identify signaling pathways that regulate SULT 

transcription in these cells. Further studies are warranted to understand the regulation of the 

SULTs during human development. 
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CHAPTER 3: DEVELOPMENTAL EXPRESSION OF THE CYTOSOLIC 
SULFOTRANSFERASES IN HUMAN LIVER 

3.1 Introduction 

 Numerous xenobiotic-metabolizing enzymes that mediate the metabolism of many 

endogenous and foreign chemicals are expressed in the liver. The expression profiles of these 

enzymes vary markedly during liver development, thereby altering the ability of the liver to detoxify 

xenobiotics, bioactivate procarcinogens, and regulate the activity of estrogen and thyroid 

hormones as well as other endogenous compounds. The currently available information about 

the ontogeny of SULT1 and SULT2 enzymes in the liver is derived from a few studies that 

examined the expression of several SULTs using conventional methods, such as non-quantitative 

PCR, Western blots, and multi-tissue blots (Her et al., 1997; Sakakibara et al., 1998; Dooley et 

al., 2000; Stanley et al., 2005; Duanmu et al., 2006), a recent report by Ekstrom and Rane that 

evaluated SULT2A1 expression in fetal and adult liver specimens (Ekstrom and Rane, 2015), and 

the limited data that are contained in transcriptomic profiling studies of various adult and fetal 

tissues (e.g., GEO DataSet Accession numbers GDS181, GDS833, GDS1096, GDS3113, 

GDS3834). To expand our knowledge about the role of SULTs during development, we 

characterized the expression patterns of these enzymes at the RNA and protein levels using 

human liver specimens and cytosolic fractions from different life stages. To achieve a high level 

of rigor in our assessment, we evaluated SULT expression in three independent sets of human 

liver specimens using three different methods of measurement, two for mRNA and one for protein. 

3.2 Materials and Methods 

Materials: Human prenatal (18-19 weeks of gestation, n=10), infant (1-12 months old, n=10), and 

adult (18-50 years old, n=10) liver specimens analyzed by reverse transcription-quantitative 

polymerase chain reaction (RT-qPCR) were obtained from the University of Maryland National 

Institute of Child Health and Human Development Brain and Tissue Bank for Developmental 

Disorders (NICHD-BTB, National Institutes of Health Contract Number HHSN275200900011C, 
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Ref. No. #N01-HD-9-0011). A separate set of prenatal (weeks 14-16, n=10) and pediatric (0 days 

to 17 years, n=52) human liver specimens was analyzed by RNA sequencing (RNA-seq). The 

prenatal specimens were obtained from the Central Laboratory for Human Embryology at the 

University of Washington (Seattle, WA). The pediatric specimens were obtained from the NICHD-

BTB and the Liver Tissue Cell Distribution System (National Institutes of Health Contract Number 

N01-DK-7-0004/HHSN267200700004C). In addition, 6 samples were generously provided by 

Xenotech, LLC (Kansas City, KS). All tissues were maintained at -80ºC prior to use. The use of 

these tissues was reviewed and declared non-human subjects research by the University of 

Missouri-Kansas City Pediatric Health Sciences Review Board at Children’s Mercy Kansas City 

and the institutional review board at Wayne State University. Donor information (age, sex, and 

postmortem interval) for the human liver specimens is provided in Appendix I and J. 

 The library of human liver cytosolic fractions used for measurement of SULT protein levels 

(obtained from our collaborator Dr. Hines from the U.S. Environmental Protection Agency, 

Research Triangle Park, NC) was previously described (Duanmu et al., 2006). 193 samples from 

this library were available for the current analysis. The cytosolic fractions were prepared from 

livers at different developmental stages, starting from week 8 of gestation until 18 years, and 

include prenatal samples from first trimester (n= 15), second trimester (n=34), and third trimester 

(n=13); infants (0-1 years old, n=76); and children (1-18 years old, n= 55). Gender information 

was provided for 183 samples with 111 being male and 72 female. Only information about  major 

diseases, cause of death, and ethnicity as well as the postmortem interval for the prenatal 

samples were available. Samples from individuals with disease processes that potentially would 

involve liver damage were excluded from the study. Tissues were stored at -80°C and approval 

was obtained from the Children’s Hospital of Wisconsin and the Medical College of Wisconsin 

Institutional Review Boards. To prepare the liver cytosols, the liver tissues were homogenized in 

a buffer containing 100 mM Tris-HCl, pH 7.4, 250 mM sucrose, 5 mM EDTA, 0.1 mM DTT, and 
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0.25 mM phenylmethylsulfonyl fluoride. The samples were centrifuged at 105,000 g for 1 hour at 

4°C to obtain the cytosolic fractions.  

RNA Isolation and Gene Expression Analysis: For the samples analyzed by RT-qPCR, liver 

specimens were thawed on ice, and 30-50 mg pieces were dissected and homogenized in QIAzol 

Lysis Reagent using a TissueRuptor (Qiagen Inc., Germantown, MD). Total RNA was prepared 

using the RNeasy Plus Universal Mini Kit (Qiagen), and RNA quality was determined using a 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA). RNA integrity number (RIN) was used to 

assess the quality of the RNA. All prenatal RNA samples had RIN values > 8, whereas most of 

the infant and adult RNA samples had RIN values > 5. Three infant and 3 adult liver specimens 

yielded RNA with RIN values < 4. These samples were considered extensively degraded and 

were excluded from the analysis. RNA samples (3 µg) were reversed transcribed using the High 

Capacity cDNA Reverse Transcription Kit, according to the manufacturer’s instructions (Thermo 

Fisher Scientific, Waltham, MA). RNA levels of 9 SULTs, CYP3A4, and CYP3A7 were measured 

as described in chapter 2.2. Data were normalized to 18S and to the median ΔCT in the prenatal 

group to calculate ΔCT and ΔΔCT, respectively, and then the 2−ΔΔCT method was used to 

quantify the relative changes in gene expression between the three developmental stages (Livak 

and Schmittgen, 2001). 

 The RNA-seq analysis was performed by our collaborators Drs. Vyhlidal and Gaedigk 

(from the Children’s Mercy Kansas City in Kansas City, MO). For these samples, frozen liver 

specimens (20-30 mg) were homogenized and total RNA extracted according to the RNeasy 

protocol (Qiagen) with on-column DNase I treatment. The quality of the isolated RNA was 

assessed using an Experion Automated Electrophoresis Station (Bio-Rad, Hercules, CA) and was 

evaluated by the RNA quality indicator (RQI) value. All samples analyzed by RNA-seq had RQIs 

> 4.9, with 39 (out of 62) samples having RQIs >8. Libraries were then prepared from 1 µg total 

RNA of each sample using the TruSeq Stranded Total RNA Sample Prep Kit (Illumina, San Diego, 

CA). Paired-end sequencing (2 x 101 bp) of high output run mode was performed using the HiSeq 
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1500 instrument (Illumina, San Diego, CA). The resulting base calling (.bcl) files were converted 

to FASTQ files and trimmed RNA-seq reads were mapped to the human genome (GRCh37/hg19). 

Transcript assembly and abundance estimation were conducted using the Tuxedo Suite pipeline 

and reported in transcripts per kilobase of exon per million fragments mapped (TPM). TPM values 

were log-transformed and differences in mRNA expression were compared between age groups. 

Age groups were defined as follows: Group 0 (prenatal samples); Group 1 (infants <1 year of 

age), Group 2 (children 1-5 years of age), Group 3 (children 6-11 years of age), and Group 4 

(adolescents, 12-17 years of age). 

SULT protein quantification: Protein concentrations of liver cytosolic fractions were estimated 

using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). For each sample, 100 µg of 

protein was resolved on a 4-12% Bis-Tris gel (Thermo Fisher Scientific) in duplicate. The region 

between 30-40 kDa was excised and proteins were reduced, alkylated, and digested with trypsin 

in-gel. Peptides were eluted from the gel pieces and dried. Heavy AQUA peptides, with labels on 

C-terminal lysine or arginine residues, were purchased from Thermo Fisher Scientific. Aliquots of 

10X stock heavy proteotypic peptides for eight SULTS at 40 fmol/µL were kept frozen at -80°C. 

On the day of the assay, peptides were resuspended in 30 µL of 1X heavy peptides in 5% 

acetonitrile, 0.1% formic acid, and 0.005% trifluoroacetic acid buffer. Peptides (5 µL) were 

separated by reversed-phase chromatography and introduced into a TSQ Vantage triple 

quadrupole mass spectrometer (Thermo Fisher Scientific). Transition settings were optimized for 

collision energies and peak retention times. Analysis time for each peptide spanned over a 2 

minute window during the 20 minute gradient. Instrument settings included full width at half 

maximum of 0.7 and cycle time of 1.2 sec. Multiple reaction monitoring (MRM) settings are found 

in Appendix K. 

 Data were imported into Skyline (version 4.1.0; MacCoss Lab, University of Washington). 

Integrated peaks were manually validated and those with signal-noise ratios < 3 were excluded. 
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Areas-under-the-curve (AUCs) for each transition peak were summed per peptide, and final 

calculations for absolute quantitation were as follows:  

 

 Samples were analyzed in duplicate; therefore, results represent the average of two 

samples. For the purposes of plotting data and performing statistical analyses, the level of a SULT 

protein in a sample with an undetectable level of that protein was given a value of 0. The SULT 

protein quantification in liver cytosols was performed in collaboration with Dr. Joseph Caruso at 

the Proteomics Core Center at Wayne State University. 

Data analysis: Samples were grouped according to age, and scatter and box-and-whisker plots 

were prepared for the mRNA and protein data, respectively. Statistical comparisons among 

groups were performed using the Kruskal-Wallis non-parametric analysis of variance (ANOVA) 

and Dunn’s multiple comparison test, using Prism version 6 (GraphPad Software, La Jolla, CA). 

Correlation analyses to perform pairwise comparisons of gene expression were also performed 

using Prism. 

3.3 Results 

3.3.1 Developmental expression of SULT mRNA in human liver. To address the gap in our 

knowledge about the developmental expression profiles of ten SULTs, we obtained specimens of 

pre- and postnatal human liver and characterized the developmental expression of SULT1 and 

SULT2 family genes using RT-qPCR and RNA-seq. While CYP3A7 is established as a gene that 

is preferentially expressed during fetal life and remains detectable in many individuals until 2 years 

of age, CYP3A4 is known to be primarily expressed in postnatal liver (Lacroix et al., 1997; Stevens 

et al., 2003). Therefore, CYP3A7 and CYP3A4 mRNA levels were measured in our tissue sets to 

demonstrate that these expected patterns of expression were observed (Fig. 3.1 and 3.2).  

fmol	SULT	per	mg	cytosol = 20	fmol	x
(Σ	light	transition	AUCs)
(Σ	heavy	transition	AUCs)

x
6

0.1	mg
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 Fig. 3.1 shows the levels of SULT mRNA in prenatal, infant, and adult liver, as measured 

by RT-qPCR. As indicated in chapter 2, SULT1A1 mRNA was measured using two different 

TaqMan Gene Expression Assays. SULT1A1 (TV1), 1A2, 1B1, 1C2, 1C4, 1E1, and 2A1 mRNAs 

were readily detectable (as determined by Ct values <30) in at least one of the developmental 

stages, but SULT1A1 (TV5), 1C3, and 2B1 mRNAs were minimally present at all stages (Ct ≥ 33) 

(Fig. 3.1). Although not statistically significant, SULT1E1 appeared to be preferentially expressed 

in the prenatal liver while SULT2A1 expression was significantly higher in the postnatal 

specimens, in agreement with a previous analysis of SULT1E1 and 2A1 immunoreactive protein 

in human liver cytosolic fractions that was published by Dr. Runge-Morris’s lab (Duanmu et al., 

2006). Nevertheless, SULT2A1 mRNA levels were relatively high in the prenatal specimens, as 

estimated by a median Ct value of 25.5, which was the third lowest (approximately same as 

SULT1A1 TV1) after SULT1C4 and 1E1. Like SULT2A1, SULT1A2 mRNA levels were higher in 

the postnatal specimens than in the prenatal specimens, while for SULT1B1, mRNA levels were 

higher in the adult than either the prenatal or infant specimens. SULT1C2 and 1C4 were 

preferentially expressed in the prenatal and infant liver specimens. However, the SULT1C2 and 

SULT1C4 expression patterns were not identical, as SULT1C2 mRNA content was highest in the 

infant livers, with a median level that was ~ 3-fold and 310-fold higher than it was in the prenatal 

and adult specimens, respectively. By contrast, SULT1C4 mRNA content was highest in the 

prenatal specimens, with a median level that was ~91 and ~192-fold higher than it was in the 

infant and adult specimens, respectively.  

 A separate set of pre- and postnatal human liver specimens was analyzed by RNA-seq, 

and the SULT transcript levels from this dataset were compared to the RT-qPCR findings. While 

both tissue sets included prenatal and infant liver specimens, the set used for RNA-seq included 

specimens from children 1-17 years of age (evaluated as four age groups: infants <1 year of age, 

children 1-5 years, children 6-11 years, and children 12-17 years) but did not include adult 

specimens. As for the RT-qPCR data, CYP3A7 and 3A4 displayed the expected patterns of 
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predominantly prenatal and postnatal expression, respectively (Fig. 3.2). The SULT1A1, 1A2, 

1C2, 1C4, 1E1, and 2A1 developmental expression profiles determined by RNA-seq (Fig. 3.2) 

were generally consistent with those observed by RT-qPCR (Fig. 3.1). SULT1A1 was expressed 

at a relatively constant level throughout development, with SULT1A1 TV1/2 being the most 

abundant transcripts (Table 3.1); SULT1A2 expression did not vary significantly during 

development but was generally higher in the postnatal periods (particularly in infants and children 

1-11 years old); SULT1C2, SULT1C4, and SULT1E1 were primarily expressed in the prenatal 

and infant specimens; and SULT2A1 expression increased after birth (Fig. 3.2). SULT1A1 TVs 

3/4 and 5, 1C3, and 2B1 mRNA levels were low throughout development (Table 3.1). SULT1B1 

mRNA levels in prenatal liver specimens were not significantly different from those in infant liver, 

which is also consistent with the RT-qPCR data, but were higher than they were in the specimens 

from children ages 1-5 and 6-11. The higher SULT1B1 mRNA levels that were present in the adult 

liver specimens analyzed by RT-qPCR could not be confirmed since the tissue set analyzed by 

RNA-seq did not include adult specimens. SULT1A3 mRNA, which was not analyzed by RT-

qPCR, was also detected in prenatal and postnatal liver by RNA-seq, with highest expression in 

the prenatal and infant specimens. Two differences between the tissue sets analyzed by RT-

qPCR and RNA-seq were that SULT1B1 and 1C4 were the seventh and first most abundant 

transcripts in the prenatal samples in Fig. 3.1 (as estimated by Ct values) but were the second 

and seventh most abundant transcripts in prenatal samples in Table 3.1 (as estimated by TPM 

values). 
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RNA was isolated from human liver specimens from prenatal, infant, and adult donors, and 
levels of SULT1A1 (TV1 or TV5), 1B1, 1C2, 1C3, 1C4, 1E1, 2A1, and 2B1 were measured 
using TaqMan Gene Expression assays, as described in Materials and Methods. CYP3A4 and 
CYP3A7 mRNA levels were measured for comparison. The median cycle threshold (Ct) value 
for each transcript and developmental stage is shown as an estimation of abundance. For each 
transcript, data are normalized to the median mRNA level (Ct value) in the prenatal group and 
presented as scatter plots, with the horizontal lines representing the median values. 
*Significantly different, P< 0.05, **P<0.01, and ***P<0.001.  
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Figure 3.1: SULT mRNA Developmental expression profiles in human liver specimens 
analyzed by RT-qPCR. 
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Table 3.1: Median Transcript per million (TPM) values for SULTs analyzed by RNA-seq 

 
 

  

SULT Transcript Prenatal Infant 1-5 years 6-11 years 12-18 years 
SULT1A1 (TV1/2) 11.01 14.41 7.12 10.98 17.87 
SULT1A1 (TV3/4) 0.06 0.00 0.12 0.00 0.22 
SULT1A1 (TV5) 0.62 0.59 0.43 0.74 1.44 
SULT1A2 1.66 4.11 4.08 4.81 2.03 
SULT1A3 5.40 2.91 2.40 1.44 2.18 
SULT1B1 24.07 17.23 13.10 13.13 16.61 
SULT1C2 8.58 2.63 0.42 0.13 0.21 
SULT1C3 0.05 0.00 0.00 0.00 0.00 
SULT1C4 4.44 0.83 0.31 0.22 0.21 
SULT1E1 34.63 3.63 0.95 0.60 1.31 
SULT2A1 10.03 68.42 84.41 40.07 150.80 
SULT2B1 0.05 0.02 0.00 0.00 0.02 
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RNA-seq was performed on human liver specimens from prenatal and pediatric (divided into 
infant, 1-5 year-old, 6-11 year-old, and 12-18 year-old groups) donors, and TPM values for 
SULT1A1 (TV1/2, TV3/4, or TV5), 1A2, 1A3, 1B1, 1C2, 1C3, 1C4, 1E1, 2A1, and 2B1 and 
CYP3A4 and 3A7 were determined, as described in Materials and Methods. For each transcript, 
data are normalized to the median mRNA level in the prenatal group and presented as scatter 
plots, with the horizontal lines representing the median values. Groups not sharing a letter are 
significantly different from each other, P< 0.05. 
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Figure 3.2: SULT mRNA Developmental expression profiles in human liver specimens 
analyzed by RNA-seq. 
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 Because the RT-qPCR and RNA-seq data indicated that several SULTs are expressed in 

prenatal liver, we explored the extent to which these genes were coordinately expressed in 

individual prenatal liver specimens as a potential clue to shared regulatory mechanisms. We, 

therefore, performed pairwise correlation analysis on the RT-qPCR and RNA-seq data for the 

genes that were relatively abundant in the prenatal specimens; SULT1A1 (TV 1 to 4), SULT1B1, 

SULT1C2, SULT1C4, SULT1E1, SULT2A1, and CYP3A7. In the specimens analyzed by RT- 

qPCR, SULT1C2, SULT1E1, SULT2A1, and CYP3A7 mRNA levels were highly correlated with 

each other (Fig. 3.3), but SULT1A1 (TV 1 to 4), SULT1B1, and SULT1C4 mRNA levels did not 

significantly correlate with any of the other genes that were examined (Appendix L). For the 

specimens analyzed by RNA-seq, SULT1A3 expression correlated with that of SULT1B1, 

SULT1C2 expression correlated with that of SULT1C4, and SULT1E1 expression correlated with 

that of SULT1A1 (TV1/2) and CYP3A7 (Fig. 3.4). 
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Pairwise correlation analyses were performed on SULT expression data from prenatal samples 
(n=10). Each scatter plot shows the expression data of one gene against another gene. The R2 
values from the correlation analysis are indicated. Significantly correlated, *p<0.05, ***p<0.005. 
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Figure 3.3: Correlation among the various SULTs and CYP3A7 mRNA measured by RT-
qPCR in prenatal liver. 
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Pairwise correlation analysis was performed on SULT1A1 (TV1/2), SULT1A3, SULT1B1, 
SULT1C2, SULT1C4, SULT1E1, SULT2A1, and CYP3A7 expression data in the prenatal liver 
(n=10). Each scatter plot shows the expression data of one gene against another. The R2 
values from the correlation analysis are indicated. Significantly correlated, *p<0.05, **p<0.01 
 
  

Figure 3.4: Correlation among the various SULTs and CYP3A7 mRNA measured by RNA-
seq in prenatal liver. 
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3.3.2 SULT protein developmental expression in human liver. Because gene expression at the 

mRNA level does not always reflect protein abundancy, we used MRM to measure the protein 

levels of SULT1A1, 1A2, 1A3, 1B1, 1C2, 1C4, 1E1, and 2A1 in human liver cytosols isolated from 

prenatal, infant (0-12 months-old), and child (1-5, 6-11, and 12-18 years-old) donors. Half of these 

SULTs, SULT1A1, 1C2, 1E1, and 2A1, were detected in at least 90% of the samples that were 

evaluated, while the others were detected in smaller percentages of the samples (11-69%). Most 

SULT proteins were detected in the prenatal period, some as early as 9-10 weeks of gestation, 

and their prenatal levels were generally highest at the beginning of the second trimester (14-17 

weeks) (Appendix M). 

 SULT1A1 was detected in all but two of the cytosolic fractions that were analyzed (both 

were prenatal samples) and was the most abundant SULT protein regardless of developmental 

stage (median levels of 1,130 to 2,681 fmol/mg cytosolic protein among the age brackets). 

SULT1A1 protein levels were relatively constant throughout the age groups that were evaluated, 

although the levels appeared to trend upward somewhat during later childhood (6-11 and 12-18 

years) (Fig. 3.6). 

 SULT1A2 was detected in most (69%) of the cytosolic fractions that were analyzed, with 

the highest frequency of detection in children 12-18 years of age (88%). The median levels of 

SULT1A2 protein were highest in the two oldest age groups (195 fmol/mg in children 6-11 years 

and 145 fmol/mg in children 12-18 years). 

 SULT1A3 was detected in only 34% of the samples and was detected more frequently in 

samples from some of the earlier age groups [prenatal (60%) and children 1-5 years of age (48%), 

although not infant (16%)] than it was in samples from older children (13-19%). The median level 

of SULT1A3 in the prenatal samples was 144 fmol/mg. 

 SULT1B1 was detected in a relatively small percentage of the samples that were analyzed 

(38%). The percentage of detection was especially low in the prenatal samples (21%). Detection 



www.manaraa.com

 

 

83 

then trended upward, from 36% of infant samples to 75% of children 12-18 years. The median 

level of SULT1B1 in children 12-18 was 331 fmol/mg. 

 SULT1C2 was detected in 95% of the samples that were evaluated. The median levels of 

protein were significantly higher in the prenatal samples (61 fmol/mg) than they were in the other 

age groups (except infants). Unlike SULT1C2 protein, and unlike the findings for SULT1C4 

mRNA, SULT1C4 protein was detected in a small percentage of the samples (11%). The largest 

percent detection of SULT1C4 protein occurred in the prenatal samples (27%), and the majority 

of this was seen in the earliest ages that were evaluated (~9-16 weeks) (Fig. 3.5). No SULT1C4 

protein was detected in children 6-18 years. 

 SULT1E1 was detected in all samples that were evaluated. SULT1E1 was the second 

most abundant SULT protein in prenatal liver cytosolic fractions (873 fmol/mg) and its levels were 

lower in the postnatal groups (104-156 fmol/mg). 

 SULT2A1 was detected in 90% of the samples and was detected at approximately this 

frequency in all age groups (87 to 92%). The median levels of SULT2A1 in cytosols from prenatal 

donors and children 12-18 were 45 and 158 fmol/mg, respectively. 
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SULT1A1, 1A2, 1A3, 1B1, 1C2, 1C4, 1E1, and 2A1 protein levels were measured by MRM in a 
library of 193 human liver cytosolic fractions from prenatal and pediatric (divided into infant, 1-5 
year-old, 6-11 year-old, and 12-18 year-old groups) donors. The data for each developmental 
stage are presented as box and whisker plots of femtomole SULT/mg cytosolic protein. *>LD, 
greater than the limit of detection = the number of samples in each group with detectable levels 
of SULT protein. Groups not sharing a letter are significantly different from each other, P< 0.05. 
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Figure 3.5: SULT protein developmental expression profiles in human liver cytosolic 
fractions analyzed by MRM. 
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3.4 Discussion 

 Exposure to drugs and other synthetic chemicals during fetal life can have serious 

consequences on the health of the exposed individuals as most of the xenobiotic-metabolizing 

enzymes that can protect against such insults are not well-developed during the prenatal period. 

Because the metabolic capacity of humans varies during development, the impact of foreign 

substances is affected by the combination of the xenobiotic-metabolizing enzymes that are 

expressed at the time of exposure by the fetus as well as by the mother and fetus. For example, 

the gastroprokinetic drug cisapride was once prescribed to treat gastroesophageal reflux and 

other gastrointestinal disorders in neonates and infants. However, due to low CYP3A4 activity, 

cisapride treatment of neonates was associated with significant adverse effects on heart rhythm 

(Kearns et al., 2003). Therefore, identifying the enzymes that determine the xenobiotic-

metabolizing capacity of the liver during early stages of development is important, both to 

understand the physiological roles of these enzymes in human development and the risks that 

are associated with xenobiotic exposures during critical life windows of susceptibility. 

 To determine the developmental expression patterns of the major SULTs that have been 

detected in human liver, we used liver specimens that were mostly obtained from National 

Institutes of Health-supported tissue repositories. That human tissue RNA is susceptible to 

degradation due to postmortem processes as well as the handling and storage procedures that 

are utilized is well known (Holland et al., 2003). Although some of the liver RNA samples we used 

for RT-qPCR were partially degraded, we do not believe that this negatively affected our results. 

Previous studies have indicated that the effect of RNA quality is minimal when (1) Ct values are 

normalized to a reference gene, (2) PCR products are short (<200 bp), and (3) PCR reaction 

efficiency is high (Antonov et al., 2005; Fleige et al., 2006; Weis et al., 2007; Gonzalez-Herrera 

et al., 2013). In this study, we used TaqMan Gene Expression assays that produce relatively short 

amplicons (<200 bp) and have essentially 100% amplification efficiency, and we normalized 

mRNA levels to 18S RNA levels, which were relatively stable among the samples that were 
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included in the analysis. As for the RNA-seq data, the RQI values and total reads did not 

significantly correlate, suggesting that partial degradation of some RNA samples did not adversely 

affect the analysis. Additionally, the expression profiles of most SULTs that were determined by 

RT-qPCR, RNA-seq, and mass spectrometry were qualitatively similar, suggesting that RNA 

quality did not affect our overall conclusions. 

 Our analyses indicate that SULT1A1 (TV1), 1B1, 1A3, 1C2, 1C4, 1E1, and 2A1 transcripts 

are relatively abundant in prenatal human liver. The RT-qPCR and RNA-seq data were generally 

consistent, although some discrepancies were noted, such as the above-described differences in 

SULT1B1 and 1C4 RNA abundance in the prenatal specimens that were determined by the two 

methods. Additionally, the correlation analyses using the data analyzed by RT-PCR and RNA-

seq we performed, suggested that the expression of several SULTs and CYP3A7 could be 

coregulated in prenatal liver. However, the genes that were found to be correlated by analyzing 

RT-qPCR data were different from these that were identified from the RNA-seq data. To some 

extent, these discrepancies could reflect the small differences in developmental ages of the 

prenatal specimens in the two datasets, as the specimens analyzed by RNA-seq were from 

subjects at 14-16 weeks of gestation while those analyzed by RT-qPCR were from donors at 18-

19 weeks of gestation. Differences could also reflect the nature of the two RNA quantification 

approaches, where one specifically targets a particular region of a targeted transcript sequence 

and the other assembles and aggregates counts of sequence reads that map onto the human 

genome. However, the overall consistency of the findings, whereby generally comparable results 

were obtained in two independent sets of tissue specimens analyzed by two different mRNA 

measurement techniques, supports the validity of our findings. 

 In chapter 2, we showed that the most abundant SULT mRNAs (as determined by RT-

qPCR) in primary cultured fetal human hepatocytes (in approximate order of abundancy) were 

SULT1C4 > 1E1 > 1A1  ≈ 2A1 > 1C2, which was the same order (as estimated by median Ct 

values) that was seen in the prenatal sample set analyzed by RT-qPCR (i.e., using the same 
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assays). In the HepaRG model, SULT1B1, 1C2, 1C3, 1C4, and 1E1 temporal expression patterns 

are consistent with the developmental expression patterns observed in the liver tissue specimens, 

assuming that confluent HepaRG cells represent an early differentiation stage akin to fetal liver, 

while differentiated HepaRG cells represent a stage that is more like adult liver. 

 We also determined the expression profiles of SULT proteins during liver development 

using a library of human liver subcellular fractions that has been previously utilized by us and 

others to characterize the developmental expression profiles of xenobiotic-metabolizing enzymes, 

including flavin-containing monooxygenase 1 and 3 (Koukouritaki et al., 2002), CYP2C9 and 

2C19 (Koukouritaki et al., 2004), CYP2E1 (Johnsrud et al., 2003), CYP3A (Stevens et al., 2003), 

and SULT1A1, 1E1, and 2A1 (Duanmu et al., 2006). These previous studies used Western blot 

and enzymatic activity analyses to demonstrate that xenobiotic-metabolizing enzymes display 

three basic patterns of developmental expression (Hines, 2013), and that enzymes belonging to 

the same subfamily can have markedly different expression profiles. 

 In the current investigation, we used MRM to measure SULT protein contents. Mass 

spectrometry-based approaches have been used to detect and quantify enzymes and 

transporters involved in drug disposition (Groer et al., 2014; Cieslak et al., 2016; Bhatt et al., 

2018). As confirmation of the approach, SULT1A1, 1E1, and 2A1 were found to exhibit the same 

expression profiles that we previously reported when the liver cytosolic fractions were analyzed 

by Western blot (Duanmu et al., 2006). 

 SULT1A2 mRNA and protein were detected in the liver specimens, and their levels were 

higher in the postnatal liver samples from donors more than 6 years of age than they were in 

prenatal or infant samples. These observations are at variance with a previous report that did not 

detect SULT1A2 protein in human hepatic or extra-hepatic normal tissue or tumor samples that 

were analyzed by Western blot (Nowell et al., 2005). In other earlier studies ,SULT1A2 mRNA 

was detected by conventional RT-PCR in some tissues including liver (Zhu et al., 1996; Dooley 

et al., 2000), and it was suggested that SULT1A2 mRNA could not be translated into protein 
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because of a splicing defect. However, two studies did detect low levels of SULT1A2 protein in 

adult human liver (Meinl et al., 2006; Teubner et al., 2007) 

 Unlike SULT1A2, SULT1A3 was preferentially expressed in prenatal specimens. In 

agreement with our analyses, previous studies demonstrated that SULT1A3 mRNA, protein, and 

enzymatic activity were detectable in fetal liver, but protein and activity were very low or 

undetectable in adult liver (Cappiello et al., 1991; Richard et al., 2001; Stanley et al., 2005; Riches 

et al., 2009), although SULT1A3 mRNA was reported to be detectable in adult liver (Wood et al., 

1994; Dooley et al., 2000) and was observed by RNA-seq in the current study with samples from 

12-18 year old donors. 

 As indicated in chapter 1.4.2, SULT1B1 is primarily expressed in the adult liver and it has 

been detected in the fetal liver at the mRNA level (Wang et al., 1998; Stanley et al., 2005; Meinl 

et al., 2006; Riches et al., 2009). In the current analysis, we determined that SULT1B1 protein 

levels increased during development. These findings were consistent with the observed SULT1B1 

RNA expression pattern obtained by qPCR, but not RNA-seq. SULT1C2 mRNA and protein were 

preferentially expressed during early development, in agreement with previous studies reported 

in chapter 1.4.2 (Her et al., 1997; Stanley et al., 2005); one study did report detectable, but very 

low levels of mRNA in adult liver (Dooley et al., 2000). 

 Although SULT1C4 mRNA was relatively abundant in the prenatal liver specimens, its 

protein was present at very low levels. This discrepancy appears to be at least partially attributable 

to the expression of multiple SULT1C4 transcript variants in liver, some of which do not give rise 

to stable protein (to be discussed in chapter 4). 

 In this report we demonstrated that most of the SULT1 and SULT2 family members are 

expressed in the liver during early development, suggesting that SULTs could be involved in the 

regulation of physiological processes in the fetus, as well as metabolism of xenobiotics that pass 

through the placenta. Further studies are needed to clarify the roles of the SULTs as determinants 

of health and disease during gestation and throughout the human life-course.  
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CHAPTER 4: DEVELOPMENTAL EXPRESSION OF SULT1C4 TRANSCRIPT VARIANTS IN 
HUMAN LIVER  

4.1 Introduction 

 The SULT1Cs are an understudied subfamily of enzymes that were identified and cloned 

using extrahepatic tissues (Her et al., 1997; Sakakibara et al., 1998; Duniec-Dmuchowski et al., 

2014). Very little is known about the SULT1Cs in the liver, which is the major site of expression 

for most SULTs (Stanley et al., 2005; Riches et al., 2009). Data presented in chapter 2 and 3 and 

other previous reports indicated that SULT1C2 and SULT1C4 mRNA is preferentially expressed 

during early life stages. SULT1C3 expression was minimal in the hepatic tissues. While the 

abundance of SULT1C2 mRNA was reflected at the protein level, the expression of SULT1C4 

mRNA and protein did not correlate with each other (as discussed in chapter 3). There are several 

transcript variants (TVs) of SULT1C4 indexed in the GenBank database, including the full-length 

mRNA containing seven exons (TV1, NM_006588), a variant mRNA lacking exons 3 and 4 (TV2, 

NM_001321770), two non-coding RNA variants (TV3, NR_135776 and TV4, NR_135779), and a 

predicted transcript variant (TVX1, XM_017003807). The purpose of this study was to identify the 

TVs that are expressed in the developing human liver and to determine the TVs that are translated 

into protein to gain more insight into the cause of the lack of correlation between SULT1C4 mRNA 

and protein expression. 

4.2 Materials and Methods 

Human Tissues: The human liver specimens that were used in this study are the same tissues 

that were analyzed by RT-qPCR and RNA-seq in chapter 3 (described in the methods section of 

chapter 3). 

RNA isolation and gene expression analysis: Total RNA was isolated from Caco-2 colorectal 

adenocarcinoma cells or HepaRG cells using the Purelink RNA Mini Kit (Thermo Fisher 

Scientific). RNA was isolated from liver specimens analyzed by qRT-PCR and RNA-seq as 

described in chapter 3. RNA was reverse transcribed to cDNA and a primer set that was predicted 
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to amplify a 1.2 Kb fragment of the full-length SULT1C4 sequence (NM_006588.3) was used to 

evaluate SULT1C4 expression in Caco-2 and HepaRG cells by standard RT-PCR. The 3 resulting 

PCR fragments, representing different transcript variants (TVs) were ligated into pGL4.10 

(Promega), sequenced, and used as synthetic standards for subsequent RT-qPCR analysis. RT-

qPCR was performed using SYBR Green, a common forward primer, and reverse primers (Table 

4.1) spanning an exon-exon junction that were designed to amplify one of the TVs shown in Fig. 

4.2A. A standard curve of Ct versus attomol (amol) plasmid DNA was prepared for each SULT1C4 

TV (Fig. 4.2B) by spiking varying amounts of the standard (100 ag to 100 pg) that were prepared 

by cloning the fragments shown in Fig. 4.1. For the purpose of plotting the data and calculating 

the amounts of each SULT1C4 TV detected in the liver specimens the amounts of each standard 

were converted from g to moles. The RNA content of each TV was then calculated using the 

following least squares line equations below generated from the standard curve for each TV and 

expressed as amol/µg RNA. 

 Equation 1 (TV1): 𝑦 = 	−3.639𝑥 + 13.22 

 Equation 2 (TV2): 𝑦 = 	−4.229𝑥 + 16.04 

 Equation 3 (E3DEL): 𝑦 = −3.77𝑥 + 14.91 

 SULT1C4 TV expression in transfected HEK293 cells was determined using a TaqMan Gene 

Expression Assay (Thermo Fisher Scientific). The procedure for RNA-seq analysis was previously 

described in chapter 3. Transcript variant information was obtained by analyzing the RNA-seq 

data using StringTie analysis software (Pertea et al., 2015). 

Western blot analysis:_HEK293 cells were plated into 100 mm dishes and transfected with a 

complex consisting of a DDK-tagged pcDNA3.1 expression plasmid containing one of the 

SULT1C4 TVs (4 µg), pBluescript II KS+ (16 µg), and Lipofectamine 2000 (50 µl) for 72 hours. 

Whole cell lysates were prepared and quantified as previously described in the methods of 

chapter 2. Proteins (amounts indicated on the figure) were then resolved on 12.5% sodium 

dodecyl sulfate-polyacrylamide gels, transferred to polyvinylidene difluoride membranes, and 
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incubated for one hour with blocking buffer [2.5% non-fat dry milk in Tris-buffered saline with 

Tween 20 (Sigma-Aldrich)]. The membranes were then incubated overnight at 4°C with mouse 

monoclonal anti-DDK antibody (Clone OTI4C5; Origene, Rockville, MD) diluted 1:2000 followed 

by a two-hour incubation with horseradish peroxidase-conjugated goat anti-mouse IgG (sc-2005; 

Santa Cruz Biotechnology) diluted 1:20,000. The blot was stripped and reprobed with b-actin (as 

described in the methods of chapter 2). 

Quantification of SULT1C4 TV protein by mass spectrometry: HEK293 cells were plated and 

transfected as described in the paragraph above. Whole cell lysates were prepared and quantified 

as described in methods of chapter 2. For each sample, 100 µg of protein was resolved on a 4-

12% Bis-Tris gel (Thermo Fisher Scientific) in duplicate. The region between 20-43 kDa was 

excised and proteins were reduced, alkylated, and digested with trypsin in-gel. Peptides were 

eluted from the gel pieces and dried. The mass spectrometry analysis and quantification of 

SULT1C4 transcript variant content in the whole cell lysates was performed as described in 

chapter 3. Samples were analyzed in triplicate; therefore, results represent the average of three 

samples. 

Statistical analysis: Data were analyzed as described in chapter 3.  
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Table 4.1: Primers used in the RT-qPCR analysis 

 
  

Primer Name Sequence 

SULT1C4- 1.2 Kb forward 5’-TAG AGG GCT GGA TAG TGT GGT AGT G-3’ 

SULT1C4- 1.2 Kb reverse 5’-GAC ATG GAG AGA GGG AAG CTC AAT-3’ 

SULT1C4- forward 5’-CCT ATC CTA AAG CAG GAA CAA CA-3’ 

SULT1C4- TV1 reverse 5’-ATG AGC TTG TTC CAA ACC AG-3’ 

SULT1C4- TV2 reverse 5’-CAG GAG CCC CAG CAC ACA G -3’ 

SULT1C4- E3DEL reverse 5’-GGA TTT CTT GCT ACA TAG ATT ATC AG -3’ 
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4.3 Results 

4.3.1 Identification of SULT1C4 TVs expressed in human intestinal and hepatic cell lines. 

Freimuth et al. is the only report that examined human SULT1C4 cDNA using fetal lung cDNA 

and 5’-RACE analysis (Freimuth et al., 2000). In the current analysis we used HepaRG and Caco-

2 cDNA to investigate the SULT1C4 transcript variants that are expressed in human hepatic and 

intestinal cells. Using primers predicted to amplify an approximately 1.2Kb fragment of the full-

length SULT1C4 (TV1) coding region, 1.2 Kb (upper band), 1.1 Kb (middle band), and 1 Kb (lower 

band) fragments were detected for both HepaRG and Caco-2 cells (Fig. 4.1). Sequencing of the 

fragments and alignment analysis revealed that the middle band represents a transcript that is 

missing exon 3 (E3DEL) and that the lower band is missing exons 3 and 4 and aligns with the 

TV2 that is reported in GenBank. These data indicated the presence of three potential transcripts 

that are co-expressed in human intestinal and liver cells.  
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RNA was isolated from Caco-2 and HepaRG cells and reverse transcribed to cDNA. PCR was 
performed using primers predicted to amplify an approximately 1.2Kb fragment of the full-length 
SULT1C4 (TV1) coding region. PCR products were resolved on a 1% agarose gel. 
  

Caco-2 HepaRG

TV1

TV2
E3DEL

Figure 4.1: Amplification of three SULT1C4 TVs from Caco-2 and HepaRG cells. 
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4.3.2 Expression of SULT1C4 TVs in the developing liver. To characterize the developmental 

expression patterns of SULT1C4 TVs expressed in the human liver, we used two sets of human 

liver specimens that were isolated from prenatal and postnatal donors. Each set of liver 

specimens was analyzed separately using either RT-qPCR or RNA-seq analysis.  

 As shown in figure 4.2C, prenatal, infant, and adult liver specimens analyzed by RT-qPCR 

expressed the three SULT1C4 TVs. All three TVs were primarily expressed in prenatal liver and 

their expression decreased markedly in the postnatal periods. TV2 was the most abundant 

transcript in prenatal, infant, and adult specimens. TV2 mRNA in prenatal liver (6.0 fmol/µg) was 

~5-fold higher than that of TV1 (1.3 fmol/ug). Expression of the E3DEL transcript was minimal in 

all liver specimens. SULT1C4 transcript variant information generated by analyzing a library of 

prenatal and pediatric (i.e., infant and children 1-18 years-old) liver specimens using RNA-seq 

identified three TVs expressed in the liver, TV1, TV2, and non-coding TV. These TVs were also 

preferentially expressed in the prenatal livers and TV2 was the most abundantly expressed TV 

whereas the levels of expression of TV1 and the non-coding RNAs were much lower. 

4.3.3 SULT1C4 TV protein abundance. To investigate the reason for the lack of correlation 

between SULT1C4 RNA and protein in the developing liver (reported in chapter 3), we examined 

the SULT1C4 TV protein content in whole cell lysates prepared from HEK293 cells transfected 

with DDK-tagged TV1, TV2, or E3DEL expression plasmid. The results of the Western blot 

analysis indicated that only TV1 and TV2 were expressed at the protein level (Fig. 4.3A). Contrary 

to our observation at the RNA level, TV1 protein was more abundant that of TV2 (Fig. 4.3A). 

When the E3DEL amino acid sequence was computationally examined using SnapGene software 

(GSL Biotech, Chicago, IL), we found that deletion of exon 3 causes a frameshift mutation that 

introduces a premature stop codon, which explains the absence of E3DEL protein. We also 

measured the mRNA levels of the three SULT1C4 transcripts using RT-qPCR to confirm that the 

differences in protein levels were not caused by variation in the transfection or transcription 



www.manaraa.com

 

 

96 

efficiency. In Fig. 4.3B, we showed that the mRNA levels of TV1, TV2, and E3DEL were relatively 

the same (Fig. 4.3B),. 

 As some factors, such as the binding affinity of the protein to the membrane during transfer 

in Western blot analysis, can influence the results obtained from Western blot, we used MRM to 

quantify TV1 and TV2 protein in the transfected HEK293 cells. Our results demonstrated that TV1 

and TV2 were both expressed in the whole cell lysates prepared from transfected HEK293 cells, 

but only TV1 protein level was quantifiable [5.31 fmol/mg] (Table 4.2). 
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(A) Schematic representation of the SULT1C4 TVs that were identified in Caco-2 and HepaRG 
cells and the primers designed to detect these transcripts individually. (B) A standard was 
prepared for each SULT1C4 transcript by cloning the 3 fragments shown in Fig. 4.1, and 
standard curves were prepared to permit quantification of transcript amounts. (C) RNA was 
isolated from specimens of prenatal (n=10), infant (n=7), and adult (n=7) human liver, and 
SULT1C4 TV levels were measured using RT-qPCR. For each TV, data were grouped 
according to developmental stage and are expressed as amol SULT1C4 transcript/μg of RNA. 
Data are shown as scatter plots with the horizontal lines representing the median values. 
***Significantly different P< 0.001. (D) RNA was isolated from prenatal (n=10) and pediatric 
(n=52) human liver specimen samples and analyzed by RNA-seq. Data are shown as scatter 
plots with the horizontal lines representing the median values. Groups not sharing a letter are 
significantly different from otherone an, p<0.05. 
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Figure 4.2: Developmental expression of SULT1C4 TVs in human liver. 



www.manaraa.com

 

 

98 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Whole cell lysates (A) and RNA (B) were prepared from HEK293 cells that were transfected with 
DDK-tagged TV1, TV2, or E3DEL expression plasmid and analyzed by RT-qPCR and Western 
blot, respectively. The results shown are from one representative experiment. Similar results 
were obtained from two additional experiments. EV, empty vector. 
 
 
  

A 

B 

Figure 4.3: SULT1C4 protein and mRNA levels after transfection of expression plasmids 
for individual TVs into HEK293 Cells. 
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Table 4.2: SULT1C4 TVs’ protein quantification in whole cell lysates of transfected 
HEK293 cells by MRM. 
 
  
 
 
 
 
 
 
 
         <LD stands for below limit of detection  

Sample Amount (fmol/mg) 
EV N/A 
TV1 5.31± 0.27 
TV2 <LD 
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4.4 Discussion 

 Xenobiotic-metabolizing enzymes that are expressed during early developmental periods 

are crucial in determining the influences of xenobiotic exposures on the developing fetus. 

Although they generally play a protective role, detoxification enzymes can increase the 

mutagenicity of many compounds that enter the body, and could therefore enhance the 

susceptibility of the fetuses to cancers in tissues that are exposed to bioactivated procarcinogens 

(Banoglu, 2000). Many studies have reported the detection of SULT mRNA, protein, and enzyme 

activity in various human tissues isolated from prenatal donors (Hines, 2008), indicating that these 

enzymes are involved in xenobiotic metabolism and the regulation of physiological functions 

during gestation. 

 SULT1C4 mRNA was reported to be abundantly expressed in fetal lung and kidney 

(Sakakibara et al., 1998). Using two separate sets of human liver specimens isolated from 

prenatal and postnatal donors and in vitro models of human liver development (i.e., HepaRG cells 

and primary cultures of fetal hepatocytes), we demonstrated that SULT1C4 mRNA is primarily 

expressed in prenatal period or undifferentiated hepatocytes, respectively (presented in chapters 

2 and 3). Recent studies indicated that SULT1C4 has high sulfonation capacity towards a wide 

range of drugs, environmental pollutants, and procarcinogens (Table 1.1). Guidry et al. recently 

reported that SULT1C4 can activate various estrogenic compounds, including dietary flavonoids 

and environmental estrogens (Guidry et al., 2017). These findings suggested that SULT1C4 could 

metabolize exogenous substrates and regulate hormone signaling pathways in human fetuses. 

Therefore, it is important to determine the tissue-specific and developmental expression patterns 

of SULT1C4 to improve our understanding of its role in modulating the susceptibility of human 

tissues to chemical exposures and regulating physiological functions, including hormone activity. 

 In the current analysis we identified at least four SULT1C4 transcript variants that were co-

expressed in human hepatic and intestinal cells and human liver specimens that were analyzed 
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by RT-qPCR and RNA-seq. The four SULT1C4 transcripts were preferentially expressed in the 

prenatal livers in agreement with our findings in chapter 3, where we determined that SULT1C4 

mRNA is preferentially expressed in the prenatal liver using the same two sets of samples that 

were analyzed in this study. 

 Our RT-qPCR and RNA-seq analyses indicated that TV2 is the most abundant transcript in 

human livers. By aligning the amino acid sequences of the TV1- and TV2-encoded proteins, also 

referred to as isoforms a (NP_006579.2) and b (NP_001308699.1) in the NCBI database, we 

determined that isoform b has a 75-amino acid deletion. The deletion does not cause a frameshift 

mutation, and thus the remaining amino acid sequence of isoform b aligns perfectly with that of 

isoform a (except for a single amino acid change). However, because the active site of SULT1C4 

(catalytic histidine residue) is located within exon 3 (personal communication from collaborator, 

Dr. Charles Falany, University of Alabama at Birmingham), TV2, which lacks exons 3 and 4, 

cannot encode an active sulfotransferase enzyme. 

 Unlike TV1, the protein encoded by TV1 is more abundant than that of the TV2-encoded 

protein. This finding could explain the lack of correlation between SULT1C4 mRNA and protein in 

the human liver specimens and cytosolsic fraction, respectively, that was reported in chapter 3. 

Sequence changes at the amino acid level can impact enzyme function, activity, stability, binding, 

and dissociation (Yue et al., 2005; Capriotti et al., 2012; Bhattacharya et al., 2017). Therefore, it 

is plausible that the discrepancy in the abundancy between TV2 mRNA and protein is because of 

the decreased stability of the TV2 protein, which could be caused by the deletion of sequences 

within exon 3 and 4 that are essential for maintaining the stability of the protein. 

 The findings of this study suggest that SULT1C4 might not play a major role in the 

developing liver, but it is possible that this enzyme could be involved in metabolizing xenobiotics 

and endogenous molecules in other tissues, including kidney and lung, where it was previously 

detected (Sakakibara et al., 1998). Further investigation is required to understand the functional 

implications of SULT1C4 TV expression in hepatic and extra-hepatic human tissues, primarily 
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during early developmental periods, and to determine the reason behind the discrepancy between 

the expression of TV2 at the mRNA and protein levels. 
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CHAPTER 5: TRANSCRIPTIONAL REGULATION OF HUMAN CYTOSOLIC 
SULFOTRANSFERASE 1C3 BY PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORg 

IN LS180 HUMAN COLORECTAL ADENOCARCINOMA CELLS 

5.1 Introduction 

 SULT1C3 is one of the least characterized human SULTs. The computationally predicted 

SULT1C3 gene consisted of seven protein coding-exons that span 18 Kb and an initial coding 

exon (exon 2) that has 3 in-frame ATG translation start sites (Freimuth et al., 2004). SULT1C3 

gene was also predicted to have a duplication of exons 7 and 8 that could theoretically be 

transcribed and processed into four splice variants containing exons 7a/8a, 7a/8b, 7b/8a, or 7b/8b 

(the first TV to be indexed in the NCBI database) that encode isoforms SULT1C3a-d, respectively 

(Freimuth et al., 2004). In a later study, SULT1C3d putative cDNA was identified using 

computational analysis, suggesting that the this TV is the most favorably expressed SULT1C3 TV 

(Meinl et al., 2008a). Substrates of the SULT1C3d enzyme, including benzylic alcohols, 

cholesterol, and lithocholic acid, were identified by expressing the recombinant enzyme in 

bacteria (Allali-Hassani et al., 2007; Meinl et al., 2008a). Also, a recent study reported that 

SULT1C3 had the highest sulfonation capacity of twelve human SULTs tested towards tolvaptan, 

which is a selective vasopressin V2-receptor antagonist that possesses a benzylic hydroxy group 

(Fang et al., 2015). Previous studies did not detect SULT1C3d, which is encoded by SULT1C3 

mRNA reference sequence (NM_001008743), in any of the twenty human tissues that were used 

for expression profiling (Freimuth et al., 2004; Meinl et al., 2008a). However, using reverse 

transcription-polymerase chain reaction and rapid amplification of cDNA ends (RACE) analysis, 

Dr. Kocarek’s lab characterized and detected SULT1C3 mRNA containing exons 7a/8a, encoding 

SULT1C3a, in human small intestine and colon and in LS180 colorectal adenocarcinoma cells 

(Duniec-Dmuchowski et al., 2014). They also found that SULT1C3 mRNA is up-regulated by 

activation of several nuclear receptors, including PPAR α and γ agonists (Rondini et al., 2014). 

The purpose of this study was to determine the mechanism responsible for the PPAR-mediated 
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transcriptional up-regulation of SULT1C3 in LS180 cells by identifying functional PPRE(s) in a 

polymorphic region of the SULT1C3 promoter.  

5.2 Materials and Methods 

Materials: Ciprofibrate was provided by Sterling Winthrop Pharmaceuticals Research Division 

(Rennselaer, NY). 4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-

methylphenoxyacetic acid (GW0742) was obtained from Tocris. Sources of the following materials 

were all listed in the methods section of chapter 2: DMSO, GW3965, GW4064, GW7647, 

rosiglitazone, rifampicin, TCDD, cell culture media and supplements, Lipofectamine 2000, and 

oligonucleotides. Targets of the agonists used is listed in Appendix E. 

Cell culture: LS180 cells were purchased from the American Type Culture Collection (ATCC, 

Manassas, VA) and cultured in Eagle’s Minimum Essential Medium (MEM) supplemented with 

10% fetal bovine serum, 2 mM L-glutamine, 1 mM sodium pyruvate, MEM non-essential amino 

acids, 100 U/ml penicillin, and 100 µg/ml streptomycin. HEK293 cells were provided by Dr. Ye-

Shih Ho (Wayne State University) and cultured in Dulbecco's Modified Eagle Medium 

supplemented with 10% fetal bovine serum, 100 U/ml penicillin, and 100 µg/ml streptomycin. Cells 

were maintained in a humidified atmosphere of 5% CO2 and 95% air at 37°C. 

Preparation of SULT1C3 reporter plasmids: Genomic DNA was isolated from MCF10A and LS180 

cells using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA). Genomic DNA (100 ng), 

Herculase II Fusion DNA Polymerase (Agilent Technologies, Santa Clara, CA), and a primer set 

that was predicted to amplify a 2.8 Kb fragment of the SULT1C3 5’-flanking region (nt -2780:+38), 

as identified by our previous 5’- RACE analysis, were used for PCR (Duniec-Dmuchowski et al., 

2014). The resulting PCR fragments were ligated into the KpnI and XhoI sites of the promoterless 

pGL4.10[luc2] firefly luciferase reporter plasmid (Promega Corporation, Madison, WI). The 

plasmid containing the 2.8 Kb insert was used as a template to prepare a construct containing ~1 

Kb of the SULT1C3 5’-flanking sequence (nucleotides -1008:+38), which was subsequently used 
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as a template to prepare a series of deletion constructs that were designed based on the positions 

of three PPRE motifs, at nucleotides -769, -446, and -383, that were predicted by computational 

analysis using MatInspector (Genomatix, Ann Arbor, MI) (Quandt et al., 1995; Cartharius et al., 

2005). All primer sequences are shown in Table 5.1. The sequences of all SULT1C3 clones were 

confirmed using the services of the Applied Genomics Technology Center at Wayne State 

University. 

Site-directed mutagenesis of PPRE motifs: Mutations were introduced into the three predicted 

PPREs using the wild-type or singly mutated (at the -446 PPRE) SULT1C3 1 Kb construct as 

template and the QuikChange II Site-Directed Mutagenesis Kit according to the manufacturer’s 

instructions (Agilent Technologies, Santa Clara, CA). The mutagenic primers are listed in Table 

5.1. 

Transient transfection analysis and treatments: Approximately 250,000 LS180 cells/well in 1 ml 

of supplemented MEM were plated into 12-well plates. Cells were transfected 48 to 72 hours after 

seeding with a complex containing 4 μl Lipofectamine 2000, 1.6 μg of a firefly luciferase reporter 

plasmid, and 1 ng pRL-CMV (Promega) per well diluted in 400 μl Opti-MEM (Life Technologies). 

24 hours after transfection, fresh supplemented MEM was added containing either DMSO (0.1% 

final concentration) or a transcription factor activator (at concentrations indicated in the text below 

and figure legends). Treatment medium was changed after 24 hours. Cells were lysed, collected, 

and analyzed as described in chapter 2.2. 

PPARγ in vitro binding assay: A PPARγ expression plasmid (pTR151) was provided by Dr. Todd 

Leff (Wayne State University). HEK293 cells were plated into 100 -mm dishes and transiently 

transfected with a complex containing 50 μl Lipofectamine 2000, 4 µg of PPARγ expression 

plasmid, 0.8 µg of a Tet-off plasmid, and 15.2 µg of pBluescript II KS+ (Agilent Technologies). 

Forty-eight hours after transfection, cells were harvested and nuclear extracts were prepared 

using the NucBuster Protein Extraction Kit (Millipore, Billerica, MA). Competitive binding 

experiments were performed using the TransAM PPARγ Kit (Active Motif, Carlsbad, CA), an 
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ELISA-based assay. Each well in the 96-well plate contained an immobilized biotinylated 

oligonucleotide probe that included a consensus PPRE sequence. Competitor oligonucleotides 

containing the wild-type or mutated SULT1C3 PPRE (at nt -769) or CYP4A1 PPRE as positive 

control (Aldridge et al., 1995) were designed (sequences are shown in Table 5.1), purchased, 

and annealed by heating at 95ºC for 5 minutes followed by slowly cooling to room temperature. 

Binding assays were performed according to the manufacturer’s instructions. Incubations 

included 5 µg of nuclear protein extract and 0, 30, or 100 pmol of competitor oligonucleotide, and 

were performed for one hour. PPARγ binding to the biotinylated probe was determined by 

colorimetric analysis using a microplate reader (CLARIOstar, BMG LABTECH, Cary, NC) at 

wavelengths of 450 and 655 nm. 

RNA interference: LS180 cells were plated into 12-well plates and cotransfected with 1.6 μg of 

the SULT1C3 1 Kb reporter plasmid and 20 pmol of an siRNA pool targeting PPARα, PPARδ, or 

PPARγ mRNA (ON-TARGETplus SMARTpool siRNA; Dharmacon, Lafayette, CO) or a negative 

control siRNA pool (ON-TARGETplus non-targeting control siRNA, Dharmacon). Cells were 

transfected using 4 μl Lipofectamine 2000 and 1 ng pRL-CMV per well. Twenty-four hours after 

transfection, cells were treated with DMSO (final concentration of 0.1%), rosiglitazone (1 μM), 

GW7647 (10 μM), or GW0742 (10 μM). Treatment medium was changed after 24 hours. After 48-

hour treatments, cells were collected to measure firefly and Renilla luciferase activities as 

described above. A luciferase reporter containing the PPRE from the promoter of the CYP4A1 

gene was used as a positive control for detection of PPAR knockdown (Kocarek and Mercer-

Haines, 2002). 

Genotyping analysis: Genomic DNA used for the genotyping analysis was isolated from human 

liver samples (n = 77). 100 ng of genomic DNA, HotStarTaq Plus DNA Polymerase, and two 

primer sets (listed in table 5.1 and shown in Fig. 5.6A) were used to PCR amplify the SULT1C3 

alleles in the liver samples. The primer set A and B amplifies the full-length allele (1174 bp) or the 

deleted allele (328 bp) whereas the primer set B and C amplifies only the full-length allele (645 
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bp). The PCR products were sequenced and aligned to the 2.8 Kb fragment from the promoter 

region of the SULT1C3. 

Statistical analysis: Statistical analysis was performed using GraphPad Prism (version 6; 

GraphPad, La Jolla, CA). Data were analyzed using one-way analysis of variance (ANOVA) 

followed by the Neuman-Keuls post-hoc test. p<0.05 was considered significantly different. Data 

are presented as means ± SD relative to DMSO-treated control. In each experiment, all treatments 

were performed in triplicate. Each experiment was repeated three times. 
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Table 5.1: Primers used to prepare reporter constructs and for genotyping analysis and 
oligonucleotides used in the PPARγ in vitro binding assay 

* The same reverse primer was used to prepare the 2.8Kb, 1.9Kb, 1Kb, DEL1, DEL2, and DEL3 
SULT1C3 fragments. 

 

Primer Name Sequence 
SULT1C3- TSS Reverse* 5’-GGG CTC GAG GCT CCA GGA CAC TGT GCA AGC AA-3’ 
SULT1C3-2.8Kb Forward 5’-GGG GGT ACC TCT GGT CCT CCT TCA TTC CCG SUCAA-3’ 
SULT1C3- 1Kb Forward 5’-GGG GGT ACC ATG CTC TAC ATA ATT CAC GTC-3’ 
SULT1C3-DEL1 Forward 5’-GGG GGT ACC ACA GAG GAC AGA CAA TGT AAA T-3’ 
SULT1C3-DEL2 Forward 5’-GGG GGT ACC TTT TAT TAC AGG CCT TGT GGT-3’ 
SULT1C3-DEL3 Forward 5’-GGG GGT ACC TTT CTA CAG GGT CAA AGG GA-3’ 
SULT1C3-DEL4 Forward 5’-GGG GGT ACC AAC AGG ATG AAA TAA TTG TGC-3’ 
SULT1C3- MUT#1 Sense 5’-GGA GTT AAG TAA ATA TTG TAC AGA AGG TAT TGT TAA AAT 

TCC ATA TAT TTA CAT TGTT CTG TCC TCT GTT TTG CAA-3’ 
SULT1C3- MUT#2 Sense  5’-CCG TAG TTA AAA TTG GTG TAG AAG AAA AAG CTT TTT AGG 

AAA CCA CAA GGC CTGT TAA AAC-3’ 
SULT1C3- MUT#3 Sense 5’-ACT TGC ACA ATT ATT TCA TCC TGT TCC CTG GAT CCC TGT 

AGA AAA TAT ATT CTA TTG CCT CT-3’ 
SULT1C3- WT PPRE Sense 5’-AAC AAT GAA CTC TGT ACA ATA TTT -3’ 

SULT1C3- MUT PPRE Sense 5’-AAC AAT ACC TTC TGT ACA ATA TTT -3’ 
CYP4A1- WT PPRE Sense 5’-GAA ACT AGG GTA AAG TTC AGT GAG -3’ 
CYP4A1- MUT PPRE Sense 5’-GAA ACT CGG AGC ACG TTA AGT GAG -3’ 

SULT1C3- Forward primer A 5’-AGC CAA GTG TAA TGA TGA TAT GAA CC-3’ 

SULT1C3- Reverse primer B 5’-TTG CTG CCT TTA GTC AAA CTG CT-3’ 

SULT1C3- Forward primer C 5’-CGA CAT TCT TGC CCT GAA ATA CAC A-3’ 
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5.3 Results 

5.3.1 Evaluation of the SULT1C3 5’-flanking region for responsiveness to transcription factor 

activators. Dr. Kocarek’s lab previously reported that SULT1C3 mRNA levels in LS180 cells were 

increased by treatments with several transcription factor activators, including ciprofibrate 

(PPARα), rosiglitazone (PPARγ), GW4064 (FXR), GW3965 (LXR), rifampicin (PXR), and TCDD 

(AhR) (Rondini et al., 2014). To determine the mechanisms underlying the regulation of SULT1C3 

by these transcription factor activators, luciferase reporter constructs containing portions of the 

5’-flanking region of SULT1C3 were prepared. While attempting to amplify a 2.8 Kb fragment (-

2789: +36) using human genomic DNA from two different sources, LS180 cells and the MCF10A 

mammary epithelial cell line, both the expected 2.8 Kb fragment and a 1.9 Kb fragment were 

generated from LS180 cells, while only the 1.9 Kb fragment was amplified from MCF10A cells 

(Fig. 5.1A). Sequencing of the two fragments revealed that the 1.9 Kb fragment had an internal 

deletion of 863 nt (-1008: -146) relative to the 2.8 Kb fragment (Fig. 5.1A). LS180 cells were 

transiently transfected with a reporter plasmid containing the 2.8 Kb or 1.9 Kb fragment and then 

treated for 48 hourhours with 100 µM ciprofibrate, 10 µM rosiglitazone, 1 µM GW4064, 10 µM 

GW3965, 30 µM rifampicin, or 0.01 µM TCDD. Of these treatments, ciprofibrate, rosiglitazone, 

GW3965, and GW4064 significantly increased luciferase activity from the 2.8 Kb reporter 

construct, while rifampicin and TCDD had no effect. However, the GW3965 and GW4064 

treatments also increased luciferase activity from the empty reporter plasmid, indicating that these 

treatments did not activate elements within the 2.8 Kb SULT1C3 5’-flanking region. Ciprofibrate 

and rosiglitazone did not increase the activity of the 1.9 Kb reporter construct (Fig. 5.1B), 

suggesting that the 863 nt deletion region contained essential elements for PPAR-mediated 

activation of SULT1C3 transcription. Rosiglitazone treatment also significantly activated a 

reporter construct containing only the 863 nt deletion and more proximal promoter region (1 Kb 

construct; nt -1008: +36), further supporting the importance of the 863 nt deletion region for 

PPAR-mediated SULT1C3 transcriptional activation (Fig. 5.2A). 
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5.3.2 Concentration-dependent effects of PPARα, PPARδ, and PPARγ agonists on SULT1C3 

transcriptional activation. To evaluate the SULT1C3 863 nt deletion region further for its 

responsiveness to PPAR activation, we determined the concentration-dependent effects of 

agonists for the three PPARs on SULT1C3 reporter activity. For these studies, LS180 cells were 

transfected with the 1 Kb reporter construct and then treated with varying concentrations (0.1-10 

µM) of rosiglitazone (PPARγ), GW7647 (PPARα), or GW0742 (PPARδ). Rosiglitazone treatment 

maximally increased reporter activity at the lowest concentration tested, which is consistent with 

its high potency for PPARγ (Fig. 5.2B). While GW7647 and GW0742 also increased reporter 

activity, the sub-micromolar concentrations that would reflect the high reported potencies of these 

compounds for their respective receptors had little or no effect, while the higher concentrations 

that might reflect cross-activation of another PPAR produced concentration-dependent increases 

that reached ~3-fold at 10 μM, which is comparable to the magnitude of increase produced by 

rosiglitazone (Fig. 5.2B). Treatment with 10 µM GW7647 and GW0742 also induced luciferase 

activity from the reporter containing the longer 2.8 KB region but not the 1.9 Kb construct lacking 

the 863 nt fragment (Fig. 5.2C), as was seen for ciprofibrate and rosiglitazone (Fig. 5.1B). 
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(A) PCR was performed with primers designed to amplify a 2.8 Kb fragment of the SULT1C3 5’-
flanking region using genomic DNA from MCF10A or LS180 cells. The PCR products were 
resolved on a 1% agarose gel. A schematic representation of the 2.8, 1.9, and 1 Kb SULT1C3 
5’-flanking fragments is shown adjacent to the gel image. (B) LS180 cells were transiently 
transfected with the SULT1C3-2.8 Kb or 1.9 Kb luciferase reporter plasmid or with the pGL4.10 
[luc2] empty reporter vector and then treated with DMSO (0.1%), ciprofibrate (PPARα agonist, 
100 μM), GW3965 (LXR, 10 μM), GW4064 (FXR, 1 μM), rifampicin (PXR, 30 μM), rosiglitazone 
(PPARγ, 10 μM), or TCDD (AhR, 0.01 μM) for 48 hours. The cells were then harvested for 
measurement of luciferase activities. Each column represents the mean ± S.D. of normalized 
(Firefly/Renilla) luciferase measurements relative to DMSO control (n=3 wells per treatment) 
from one cell culture experiment. Similar data were obtained in two additional independent 
experiments. *, **, ***Significantly different from DMSO-treated controls at P< 0.05, 0.01, and 
0.001, respectively.  
Figure taken with permission from (Dubaisi et al., 2016) 
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Figure 5.1: Impact of a deletion in the 5’-flanking region of the SULT1C3 gene on its 
regulation by transcription factor activators. 
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(A) LS180 cells were transiently transfected with a luciferase reporter plasmid containing either 
the 2.8 Kb or 1.9 Kb SULT1C3 5’-flanking region fragment, with the 1Kb reporter containing the 
deleted region, or with control empty vector. 24 Hours after transfection the cells were treated 
with DMSO (0.1%) or rosiglitazone (10 µM) for 48 hours. (B) LS180 cells transfected with the 1 
Kb reporter were treated with DMSO (0.1%) or with 0.1 to 10 µM rosiglitazone (PPARγ agonist), 
GW7647 (PPARα), or GW0742 (PPARδ) for 48 hours. (C) LS180 cells transfected with the 2.8 
Kb, 1.9 Kb, or 1 Kb reporter or with control empty vector were treated with DMSO (0.1%), 
GW7647 (10 µM), or GW0742 (10 µM). The cells were then harvested for measurement of 
luciferase activities. Each column represents the mean ± S.D. of normalized (Firefly/Renilla) 
luciferase measurements relative to the corresponding DMSO control (n=3 wells per treatment) 
from one cell culture experiment. Similar data were obtained in two additional independent 
experiments. *, **, ***Significantly different from DMSO-treated control at P< 0.05, 0.01, and 
0.001, respectively. 
Figure taken with permission from (Dubaisi et al., 2016)  

A

C

B

Figure 5.2: Effects of PPAR agonists on transcription of SULT1C3 reporter constructs. 
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5.3.3 Identification of a functional PPRE within the 863 nt deletion region of the SULT1C3 gene. 

Computational analysis identified three putative PPREs within the 1 Kb reporter fragment (-1008: 

+36) located -769, -446, and -383 nt upstream from the transcription start site. To determine the 

functionality of these predicted PPREs, we first prepared four reporter constructs that 

progressively deleted the three PPREs from the 1 Kb fragment and transfected them into LS180 

cells. Treatment with rosiglitazone (1 μM), GW7647 (10 μM), or GW0742 (10 μM) for 48 hours 

increased the luciferase activity of the 1 Kb construct and deletion construct containing all three 

PPREs (-808:+36) by 3- to 5- fold relative to DMSO-treated controls, but did not increase the 

activity of the three reporters that lacked the first PPRE at -769 (Fig. 5.3A). These data implicate 

the PPRE at nt -769 as an essential element for obtaining PPAR-mediated SULT1C3 

transactivation. 

 To confirm the importance of the PPRE at -769 and determine the involvement of the other 

two predicted PPREs in the transcriptional activation of SULT1C3, mutations were introduced into 

each of the PPREs. LS180 cells were transfected with reporters containing either the wild-type 1 

Kb fragment or the 1Kb fragment with one or two mutated PPREs. Mutation of the distal PPRE 

(at nt -769) eliminated the response of the 1 Kb reporter to rosiglitazone, GW7647, and GW0742 

treatments (Fig. 5.3B). However, the PPAR agonists were all able to produce significant activation 

of reporters in which one or both of the more proximal PPREs (at nt -446 and -383) were mutated 

(Fig. 5.3B). These data indicate that only the PPRE at -769 is essential for obtaining PPAR-

mediated activation of SULT1C3 transcription. 

 A competitive ELISA-based in vitro DNA-binding assay was used to determine the ability of 

PPARγ to bind directly to the distal PPRE. As shown in Fig 5.4, addition of 30 or 100 pmol of a 

double-stranded competitor oligonucleotide containing the wild-type SULT1C3 PPRE, but not the 

mutated SULT1C3 PPRE, significantly decreased the amount of PPARγ that bound to a 

biotinylated capture probe. This level of inhibition was approximately the same as that produced 

by a competitor containing the CYP4A1 PPRE 
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LS180 cells were transiently transfected with a series of reporter plasmids with progressive 5’-
deletions from the 1 Kb SULT1C3 reporter plasmid that were designed based on the positions 
of computationally predicted PPREs (A) or with the 1 Kb SULT1C3 reporter plasmid containing 
either the wild-type sequence or site-directed mutations at one or two of the predicted PPREs 
(B). Transfected cells were treated with DMSO (0.1%), rosiglitazone (1 μM), GW7647 (10 μM), 
or GW0742 (10 μM) for 48 hours and then harvested for measurement of luciferase activities. 
Each column represents the mean ± S.D. of normalized (Firefly/Renilla) luciferase 
measurements relative to the DMSO-treated, empty vector-transfected group (n=3 wells per 
treatment) from one cell culture experiment. Similar data were obtained in two additional 
independent experiments. *, **, ***Significantly different from DMSO-treated controls at P< 0.05, 
0.01, and 0.001, respectively. 
Figure taken with permission from (Dubaisi et al., 2016) 
 

A

Figure 5.3: Evaluation of three computationally predicted PPREs within the deleted 
region of the SULT1C3 5’-flanking region. 
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In vitro binding was determined by incubating a biotinylated oligonucleotide containing a 
consensus PPRE with PPARγ-containing nuclear extract in the absence or presence of 
unbiotinylated competitor oligonucleotide (30 or 100 pm) containing wild-type or mutated 
CYP4A1 or SULT1C3 PPRE, as described in Methods. Each column represents the mean ± 
S.D. absorbance relative to the control absorbance (no competitor added; n=4). ***Significantly 
different from control at P<0.001. 
Figure taken with permission from (Dubaisi et al., 2016) 
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Figure 5.4: In vitro binding of PPARγ to the predicted SULT1C3 PPRE at nt -769. 
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5.3.4 Predominance of PPARγ in the transcriptional regulation of SULT1C3. Rosiglitazone, 

GW7647, and GW0742 are potent and selective agonists of PPARγ, PPARα, and PPARδ, 

respectively, although each agonist can cross-activate non-target PPAR receptors at sufficiently 

high concentrations. As shown in Fig. 5.2, while rosiglitazone increased SULT1C3 reporter 

expression at low concentrations consistent with PPARγ activation, the effects of GW7647 and 

GW0742 were only evident at relatively high concentrations, suggesting that these compounds 

might have increased SULT1C3 transcription by cross-activating PPARγ rather than by activating 

their target receptors. To test this possibility, we assessed the impact of siRNA-mediated 

knockdown of each PPAR on activation of the 1Kb reporter construct by 1 μM rosiglitazone, 10 

μM GW7647, and 10 μM GW0742. The knockdown of PPARγ decreased activation of the positive 

control CYP4A1-PPRE reporter and the SULT1C3 1 Kb reporter by almost 90%, not only by 

rosiglitazone, but also by GW7647 and GW0742 (Fig 5.5A). However, knockdown of PPARα or 

PPARδ had little to no effect on reporter activation by rosiglitazone, GW7647, or GW0742 (Fig 

5.5B and 5.5C). These data indicate that the effects of all three PPAR agonists on SULT1C3 

transcription can mainly be attributed to the activation of PPARγ. 

5.3.5 Genotyping for the full-length and variant SULT1C3 alleles in the human genome. To verify 

the existence of the deletion (863 nt) in the genome of normal individuals, we genotyped for the 

SULT1C3 alleles in human liver specimens (in collaboration with Dr. Erin Scheutz at the St. Jude 

Children’s Research Hospital). Our preliminary experiments showed that primer set A and B 

preferentially amplified a fragment from the variant allele (328 bp) over a fragment from the full-

length allele (1174 bp), and thus the individuals that carry both alleles could not be identified using 

this primer set. To identify heterozygotes, we designed a forward primer that was placed within 

the deleted region (primer C). The primer set C and B exclusively amplified a fragment from the 

full-length allele (645 bp). Fig. 5.6B is a representative gel image that shows the genotype for the 

SULT1C3 gene in the genome of some individuals. The 1174 bp (upper panel) and 645 bp (lower 

panel) were detected in homozygotes for the full-length allele, as shown in specimens with ID 



www.manaraa.com

 

 

117 

numbers 443, 637, 675, and 765. Only a 328 bp band (upper panel) was detected in homozygotes 

for the variant SULT1C3 allele, as shown in specimens with ID numbers 350, 432, 482, 663, and 

740. Two bands were amplified in heterozygotes, the 385 bp fragment (upper panel) and the 645 

bp fragment (lower panel), as shown in specimen ID numbers 433, 619, 623, 638, 656, 674, 684, 

686, 727, 744, and 769.  

 Overall, there were 18 homozygotes for the full-length allele, 15 homozygotes for the variant 

allele, and 44 heterozygotes and the calculated frequency for the deleted allele was 0.48 (Fig. 

5.6C). The sequencing of the PCR products and alignment of these products to the full-length 

fragment indicated that the variant allele has 863 nt deleted and an additional 18 nt inserted at 

the site of the deletion. 
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LS180 cells were transiently cotransfected with either the SULT1C3 1Kb or the CYP4A1 PPRE 
reporter plasmid (positive control) and 20 pmol of either non-targeting (NT) siRNA or siRNA 
targeting PPARγ (A), PPARα (B), or PPARδ (C). 24 Hours after transfection cells were treated 
with DMSO (0.1%), rosiglitazone (1 μM), GW7647 (10 μM), or GW0742 (10 μM) for 48 hours 
and then harvested for measurement of luciferase activities. Each column represents the mean 
± S.D. of normalized (Firefly/Renilla) luciferase measurements (3 wells per treatment). Similar 
data were obtained in two additional independent experiments. *, **, ***Significantly different 
from DMSO-treated controls at P< 0.05, 0.01, and 0.001, respectively.  
Figure taken with permission from (Dubaisi et al., 2016) 
 

A

B

C

Figure 5.5: Effect of PPAR knockdowns on SULT1C3 transcriptional activation by 
different classes of PPAR agonist. 
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(A) Schematic representation demonstrating the locations of the primers used for the 
genotyping analysis and the expected sizes of the PCR products. (B) PCR was performed with 
primers designed to genotype SULT1C3 5’-flanking region using genomic DNA prepared from 
human liver specimens (n=77). The PCR products were resolved on a 1% agarose gel. (C) A 
table presenting the number of observed homozygotes for full-length and variant alleles and 
heterozygotes as well as the overall frequency of the variant allele. 

  

Genotypes Observed #
Homozygote reference 18

Heterozygote 44

Homozygote variant 15

Variant allele frequency 0.48*

1174 bp

645 bp

328 bp

A 
 

B 
 

C 
 

Figure 5.6: Genotyping analysis for full-length and variant alleles in the 5’-flanking region 
of SULT1C3 gene in human liver. 
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5.4 Discussion 

 The intestine is a major portal of entry for many drugs, environmental chemicals, and other 

xenobiotics, and the intestine is therefore equipped with many xenobiotic-metabolizing enzymes, 

including several SULTs. The intestine is the major site of expression for SULT1A3, SULT1B1, 

and SULTE1, relative to the kidney, liver, and lung (Riches et al., 2009). SULT1A1, SULT1A3, 

and SULT1B1 are abundantly expressed throughout the gastrointestinal tract, while SULT1E1 

and SULT2A1 are expressed in the jejunum, ileum, and cecum (Teubner et al., 2007; Riches et 

al., 2009). SULT1C enzymes are also expressed in the gastrointestinal tract (as shown in Table 

1.2) as well as several human intestinal cell lines, including LS180 and Caco-2 cells (Sakakibara 

et al., 1998; Dooley et al., 2000; Meinl et al., 2008b; Rondini et al., 2014).  

 Rondini et al. previously reported that SULT1C3 expression in LS180 cells is induced by AhR, 

FXR, LXR, PPARα, PPARγ, and PXR agonists (Rondini et al., 2014). However, we report here 

that only PPAR agonists activated SULT1C3 transcription through sequence information 

contained within a 2.8 Kb fragment (-2789: +36) of the gene’s 5’-flanking region. This finding 

implies that the cis-elements controlling SULT1C3 expression by the other transcription factors 

are located in other regions of the SULT1C3 gene, possibly further upstream or within the 7.1 Kb 

intron that separates non-coding exon 1 from exon 2 (Duniec-Dmuchowski et al., 2014).  

 While attempting to amplify a 2.8 Kb fragment of the SULT1C3 5’-flanking region, we found 

that amplicons of two different sizes were generated from LS180 genomic DNA; the expected 2.8 

Kb fragment and a smaller fragment with an internal 863 nt deletion, from -1008 to -146 relative 

to the transcription start site. However, only the smaller fragment was detected in MCF10A cells 

indicating that there was variability in the SULT1C3 5’-flanking sequence among sources of 

genomic DNA. We also detected a variant allele that has the same 863 nt deleted in the genome 

of 59 individuals. This sequence variability appears to be attributable to a deletion polymorphism 

because the 1000 Genomes Project includes this structural variant in its database (esv3591922) 

(Genomes Project et al., 2012). Since this deletion region contains a functional PPARγ binding 
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site, it is plausible that SULT1C3 expression may vary among individuals depending on whether 

they carry the variant allele. 

 The three PPARs are expressed in fetal and adult human intestine (Abbott et al., 2010), and 

we have shown that PPARα and PPARγ are expressed in LS180 cells (PPARδ was not evaluated) 

(Rondini et al., 2014). In the current investigation we found that rosiglitazone, a potent and 

selective PPARγ agonist, significantly increased the activities of luciferase reporter plasmids 

containing the deletion region of the SULT1C3 5’-flanking region (i.e., the 2.8 Kb and 1 Kb 

reporters). Although the luciferase activity of these reporters was also increased by PPARα and 

PPARδ agonist treatments, these effects were probably attributable to cross-activation of PPARγ 

since (1) relatively high concentrations of the PPARα and PPARδ agonists were needed to induce 

the reporter activity and (2) siRNA targeting PPARγ abolished reporter activation by all PPAR 

agonists while siRNA targeting PPARα or PPARδ had little effect. These data indicate that PPARγ 

is the predominant PPAR that regulates SULT1C3 transcription in LS180 cells. 

 PPARγ is highly expressed in the various regions of human intestine, at levels that are 

comparable to those detected in adipocytes, and this transcription factor could play a role in 

gastrointestinal morphogenesis during fetal development (Fajas et al., 1997; Huin et al., 2000; 

Abbott, 2009; Abbott et al., 2010). In human intestine, PPARγ signaling has been linked to growth 

arrest, apoptosis, and differentiation (Gupta et al., 2001; Gupta et al., 2003; Thompson, 2007). In 

human colon cancer cells, PPARγ-regulated genes have been classified into three functional 

categories: regulation of lipid metabolism, signal transduction, and motility and adhesion (Chen 

et al., 2006; Bush et al., 2007; Su et al., 2007). SULT1C3 could play a role in intestinal physiology 

by metabolizing one or more endogenous molecules that function in the regulation of these 

PPARγ-regulated processes. 

 In summary, we have identified a functional PPRE in the 5’-flanking region of the SULT1C3 

gene, thereby establishing SULT1C3 as a direct PPARγ target in intestinal cells. This finding 

implies that SULT1C3 could play a role in PPARγ-regulated processes associated with intestinal 
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development and function. Since the PPRE is located within a polymorphic region of the 

SULT1C3 gene, our findings also provide a mechanistic rationale to hypothesize that there could 

be considerable differences among individuals in the intestinal expression of SULT1C3. Further 

studies are needed to establish the genotype-phenotype relationship between the presence of 

the PPRE and intestinal SULT1C3 expression. The findings of our genotyping analysis and the 

reports in 1000 Genomes Database indicated that the structural variant lacking the PPRE appears 

to be a fairly common polymorphism (the overall allele frequency of esv3591922 in the 1000 

Genomes Database is 0.3329). The data from the 1000 Genome Database demonstrated that 

the frequency of this polymorphism varied among the different populations (frequencies of 

esv3591922 for African, Ad Mixed American, East Asian, European, and South Asian super 

populations of 0.2852, 0.3329, 0.1091, 0.4394, and 0.5184, respectively). It is possible that inter-

individual differences in intestinal SULT1C3 expression could have pharmacological and 

toxicological implications, for example by modifying the risk for intestinal bioactivation of 

procarcinogenic molecules. 
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CHAPTER 6: FINAL CONCLUSIONS AND FUTURE DIRECTIONS 

 Eugen Baumann was the first to discover the process of sulfonation in 1876 (Baumann, 1876), 

and since then a large number of xenobiotics and endogenous molecules have been found to be 

conjugated with a sulfonate group, thereby modulating the activity of these molecules. SULT1 

and SULT2 expression was detected in prenatal hepatic and extrahepatic tissues, suggesting that 

these enzymes are responsible for the biotransformation of xenobiotics during fetal life (Barker et 

al., 1994; Stanley et al., 2005; Duanmu et al., 2006). However, none of these studies performed 

a comprehensive analysis of SULT expression that includes the understudied SULTs, such as 

the SULT1Cs, or identified signaling pathways that regulate the expression of these enzymes in 

differentiating hepatocytes or intestinal cells. For this reason, we (1) examined the role of lipid- 

and xenobiotic-sensing transcription factors in the regulation of SULT expression using in vitro 

models of human liver development, (2) determined the expression profiles of SULT1 and SULT2 

mRNA and protein in prenatal and postnatal liver specimens and cytosolic fractions, (3) examined 

the expression profile of SULT1C4 TVs in the developing human liver, and (4) determined the 

mechanism involved in the transcriptional regulation of SULT1C3 by PPARγ. 

 Based on previous studies, we hypothesized that (1) most SULT1 and SULT2 mRNA and 

protein are expressed in the immature liver and that these enzymes are expressed with class I, 

II, and III expression patterns (described in chapter 1) and (2) SULT1 and SULT2 expression is 

regulated by lipid- and xenobiotic-sensing transcription factors. Our data demonstrated that 

SULTs, primarily SULT1A1, SULT1C2, SULT1C4, SULT1E1, and SULT2A1, were abundantly 

expressed in primary cultures of fetal hepatocytes, confluent HepaRG cells, and prenatal liver 

specimens. We also classified the expression of individual SULTs into the three classes of 

developmental expression patterns. Our results also indicated that SULT1 and SULT2 expression 

was regulated by lipid- and xenobiotic-sensing nuclear receptors as well as AhR.  These findings 

suggest that SULT1 and SULT2 enzymes are part of regulatory networks that are involved in 

mediating the effects of xenobiotics and endogenous molecules during early development, and 
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further implicate SULT1 and SULT2 enzymes in the regulation of essential cellular functions in 

the immature liver. To further confirm these observations, future work should examine the 

regulation of the individual SULTs in models of human liver development that undergo a complex 

differentiation process resembling that of human liver cells in vivo. Induced pluripotent stem cells 

that can be induced to differentiate into hepatocyte-like cells and humanized mouse models that 

express human SULT genes are models that can be used to investigate the regulatory 

mechanisms controlling SULT expression and to study their role in hepatocyte differentiation. It 

will also be interesting to determine some of the substrates that are metabolized by SULT1 and 

SULT2 enzymes in the differentiating liver cells to help us understand the physiological 

importance of these enzymes.   

 Current evidence suggests that SULT1C4 is primarily expressed in fetal tissues (Sakakibara 

et al., 1998). In this project we found that SULT1C4 mRNA is abundantly expressed in primary 

fetal hepatocytes, confluent HepaRG cells, and prenatal liver specimens, but the protein levels 

are very low throughout development. Based on our data, we believe that the inconsistency 

between SULT1C4 mRNA and protein levels is due to the low translation efficiency or decreased 

stability of the protein made from SULT1C4 TV2, which is the most abundant TV at the mRNA 

level. Future experiments should include examining the stability of the SULT1C4 TV1 and TV2 

protein that could explain the lack of correlation in the abundance of TV1 and TV2 mRNA and 

protein. We are currently working on developing an ELISA assay that will allow us to examine 

TV1 and TV2 protein stability by pulse labeling with a non-radiolabeled modified amino acid. Since 

our findings suggest that SULT1C4 does not play an important metabolic role in the liver, further 

studies using extrahepatic tissues is needed to examine the role of SULT1C4 in other tissues.  

 Finally, our work on SULT1C3 suggests that this enzyme is involved in regulating intestinal 

processes that are controlled by PPARγ. Our data also indicate that a genetic variation in the 

SULT1C3 promoter region affects the regulation of SULT1C3 by PPARγ. To identify the biological 

pathways that are regulated by SULT1C3, future studies should focus on identifying target genes 
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and substrates that are regulated by SULT1C3 expression using human intestinal in vitro models, 

tissue specimens, and humanized mouse models. Experiments examining the correlation 

between SULT1C3 genotype and phenotype in human intestinal tissues could also elucidate the 

impact of this allelic variation on SULT1C3 expression. 
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APPENDIX A: PERMISSION TO REPUBLISH FIGURE 1.1  
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APPENDIX B: PERMISSION TO REPUBLISH FIGURE 1.2 
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APPENDIX C: PERMISSION TO REPUBLISH FIGURES AND TABLES IN CHAPTER 2  
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APPENDIX D: CHARACTERISTICS OF FETAL HEPATOCYTES DONORS 

 

 
 
 
 
 
 
  
 
 
 
Table taken with 

permission from (Dubaisi et al., 2018) 
  

Tissue ID Gestational Age Sex Hepatocyte Viability 
at Isolation 

HFet#100 12 Weeks Female 90% 

HFet#101 14 Weeks Female 90% 

HFet#104 18 Weeks Female 87% 

HFet#105 18 Weeks Female 90% 

HFet#106 22 Weeks Male 88% 
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APPENDIX E: TARGETS AND TREATMENT CONSENTRATIONS OF AGONISTS USED IN 
CHAPTERS 2 AND 5  

 

 

 

 

 

 

 

 

 

 

 

 
 
TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; AhR, aryl hydrocarbon receptor; CITCO, 6-(4-
chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime; CAR, 
constitutive androstane receptor; GW3965, 3-[3-[[[2-chloro-3-(trifluoromethyl)phenyl]methyl](2,2-
diphenylethyl)amino]propoxy]benzeneacetic acid hydrochloride; LXR, liver X receptor; PXR, 
pregnane X receptor; CDCA, chenodeoxycholate; GW4064, 3-[2-[2-chloro-4-[[3-(2,6-
dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]benzoic acid; FXR, 
farnesoid X receptor; GW7647, 2-[[4-[2-[[(cyclohexylamino)carbonyl](4-
cyclohexylbutyl)amino]ethyl]phenyl]thio]-2-methylpropanoic acid; GW0742, 4-[[[2-[3-fluoro-4-
(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]-thio]-2-methylphenoxyacetic acid; PPAR, 
peroxisome proliferator-activated receptor; VDR, vitamin D receptor; VitD3, 1α,25-
dihydroxyvitamin D3   

Agonist Target Pathway 

TCDD AhR 

CITCO CAR 

GW3965 LXR 

Rifampicin PXR 

CDCA FXR 

GW4064 FXR 

Ciprofibrate PPARa 

GW7647 PPARa 

GW0742 PPARd 

Rosiglitazone PPARg 

VitD3 VDR 
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APPENDIX F: TAQMAN GENE EXPRESSION ASSAYS USED IN CHAPTERS 2 AND 3. 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table taken with permission from (Dubaisi et al., 2018)  
 
 
 
 
  

Gene TaqMan Assay ID 

CYP1A1 Hs00153120_m1 

CYP2B6 Hs04183483_g1 

CYP3A4 Hs00604506_m1 

CYP3A7 Hs00426361_m1 

PLIN2 Hs00605340_m1 

SHP Hs00222677_m1 

SREBP1 Hs01088679_g1 

SULT1A1- TV5 Hs00738644_m1 

SULT1A1- TV1 APFVK4A1 

SULT1A1- TV1 to 4 Hs00742033_mH 

SULT1B1 Hs00234899_m1 

SULT1C2 Hs00602560_m1 

SULT1C3 Hs01371045_m1 

SULT1C4 Hs00923769_m1 

SULT1E1 Hs00193690_m1 

SULT2A1 Hs00234219_m1 

SULT2B1 Hs00190268_m1 

18S 4319413E 

GAPDH 4326317E 

TBP 4310891E 
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APPENDIX G: PRIMERS USED FOR THE RACE ANALYSIS AND TO PREPARE SULT1C4 
REPORTER CONSTRUCTS 

 

Note: The sequences in bold were added to all primers that were used with the In-Fusion HD 
Cloning Kit to PCR amplify and fuse the fragments with the linearized PGL4.10 reporter plasmid 
containing the core promoter. 
 

 

  

Primer name Sequence 
RACE Reverse  5’-TCC AAG CCA AGC CTG ATG ACC TGC T-3’ 
2.2 Kb Forward 5’-GGC AGT TTA AAT TCA AAC CCA-3’ 

2.2 Kb Reverse 5’-GTG GTA GTG TGG TGG ATA GAG TGC T-3’ 

Fragment A Forward 5’-GAG CTC GCT AGC CTC GAG CTT CCT CTT GCT TCG GTT TCA AGT -3’ 

Fragment A Reverse 5’-GGA TCT GAA TCT CTC GAG GTG ATC TTG ACT ACA AAC ACT GCT C-3’ 

Fragment B Forward 5’-GAG CTC GCT AGC CTC GAG CAC AGT GAG AAG CCT GTA CTA AGG GA-
3’ 

Fragment B Reverse 5’-GGA TCT GAA TCT CTC GAG GGA GAG TGA GCT AAG CCT GTG T-3’ 

Fragment C Forward 5’-GAG CTC GCT AGC CTC GAG ACC CAT GTG GTT CCT TGT AAC ACT -3’ 

Fragment C Reverse 5’-GGA TCT GAA TCT CTC GAG GTG CTG CCT GTC TAT CAT GGG TC-3’ 

Fragment D Forward 5’-GAG CTC GCT AGC CTC GAG AAT CCG AAC ACC AGA CTC TTC TGA-3’ 

Fragment D Reverse 5’-GAG CTC GCT AGC CTC GAG GGG AAA TGG TCC TGG GTA TGT GT -3’ 

Fragment E Forward 5’-GAG CTC GCT AGC CTC GAG AGT GAG ATC ACA CCC CAT GAA G -3’ 

Fragment E Reverse 5’-GGA TCT GAA TCT CTC GAG TGG AGA TTC AAA GTG TCT CAA AGT-3’ 

Fragment F Forward 5’-GAG CTC GCT AGC CTC GAG GGC ATG TCT TTC TAT ATG GAT GTG G-3’ 

Fragment F Reverse 5’-GGA TCT GAA TCT CTC GAG AGC CAG GTA ATT GGG AAT TGG T -3’ 

Fragment G Forward 5’-GAG CTC GCT AGC CTC GAG TGT GAT AAA TGC AAG TGA GGT TGG-3’ 

Fragment G Reverse 5’-GAG CTC GCT AGC CTC GAG GGG AGA GGC AAT GCT TTA AAT TTG T-3’ 

Fragment H Forward 5’-GAG CTC GCT AGC CTC GAG TCT AAA GGA GAG GAC AGA GGA AGA -3’ 

Fragment H Reverse 5’-GAG CTC GCT AGC CTC GAG GCT TCC TTA GAG AAG GGG ATT TCA-3’ 

Fragment I Forward 5’-GAG CTC GCT AGC CTC GAG TGG CAC TAC AAT GGC TTC TAA TCA-3’ 

Fragment I Reverse 5’-GAG CTC GCT AGC CTC GAG AGA TCT GAG ATT CCC CTT GCT TTT-3’ 
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APPENDIX H: EXPRESSION OF SULT mRNA IN THE DIFFERENTIATING HIOs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Temporal expression of SULTs during the differentiation of ESCs into HIOs. Cells were 
harvested on the indicated time points for measurement of mRNA levels. mRNA levels were 
normalized to the levels measured in the HIOs. The data show the expression patterns of seven 
cytosolic SULTs from the ESCs, DE, HG (treated with FGF for 4 and 6 days), and HIOs. The 
cycle threshold (Ct) values for the various genes are shown below the x-axis. 3 wells were 
pooled together for the ESCs, DE, and HG samples and multiple HIOs were pooled in 1 sample. 
Data were normalized to GAPDH. Similar results were obtained from a second experiment.   
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APPENDIX I: DONOR INFORMATION FOR SAMPLES ANALYZED BY RT-QPCR 

 
 

Developmental 
Stage Sample ID Sex Prenatal Age Postnatal Age 

Postmortem 
Interval 
(hours) 

Prenatal 

34 Female 18 weeks  1 
40 Female 18 weeks  1 
42 Female 18 weeks  1 
235 Female 19 weeks  1 
246 Male 19 weeks  1 
276 Male 18 weeks  1 
317 Male 19 weeks  1 
893 Female 19 weeks  2 
1330 Female 18 weeks  2 
1390 Female 18 weeks  1 

Infant 

75 Male  96 days 36 
82 Male  137 days 37 
83 Male  69 days 27 
326 Female  66 days 19 
1102 Male  119 days 22 
1472 Female  118 days 19 
1490 Female  70 days 23 

Adult 

289 Male  24 years, 362 days 5 
602 Male  27 years, 42 days 15 
819 Male  18 years, 217 days 28 
1021 Male  19 years, 242 days 14 
1028 Male  39 years, 11 days 14 
1539 Female  33 years, 177 days 23 
5611 Female  50 years, 183 days 15 
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APPENDIX J: DONOR INFORMATION FOR SAMPLES ANALYZED BY RNA-SEQ 

Developmental 
Stage Sample ID Sex Prenatal Age Postnatal Age Postmortem 

Interval (hours) 

Prenatal 

20636 Male 14.7 weeks   <2 
21248 Female 14.7 weeks   <2 
21251 Male 14.7 weeks   <2 
21432 Male 16.1 weeks   <2 
21601 Male 16.4 weeks   <2 
21605 Male 14.7 weeks   <2 
21806 Female 16.4 weeks   <2 
21883 Male 16.4 weeks   <2 
21949 Female 16.1 weeks   <2 
21978 Female 15.6 weeks   <2 

Infant 

86 Male   56 days 11 
432 Male   4 days 2 
435 Male   274 days 10 
569 Male   133 days 16 
759 Male   35 days 7 
774 Male   273 days 10 
780 Male   0 days 13 
825 Male   334 days 11 
1055 Male   96 days 12 
1157 Female   20 days 14 
1281 Male   206 days 6 
1296 Male   98 days 16 
1325 Female   182 days 18 
1547 Male   259 days 10 

Child 

64 Male   15 years 13 
346 Male   3 years 11.17 
617 Female   1 year, 347 days 9 
677 Male   1 year, 353 days 13 
689 Female   5 years 19.5 
792 Male   4 years 14.5 
872 Male   2 years 14.5 
885 Male   17 years 12.5 
1860 Male   8 years, 2 days 5 
8902 Male   7 years Surgical specimen 
8906 Male   12 years Surgical specimen 
8910 Male   14 years Surgical specimen 
8917 Female   6 years Surgical specimen 
8920 Male   11 years Surgical specimen 
8924 Female   9 years Surgical specimen 
8925 Male   8 years Surgical specimen 
8926 Female   1 year, 304 days Surgical specimen 
8935 Male   17 years Surgical specimen 
9003 Female   7 years Surgical specimen 
9006 Male   10 years Surgical specimen 
9011 Female   3 years, 183 days Surgical specimen 
9013 Male   11 years Surgical specimen 
9023 Female   2 years, 213 days Surgical specimen 
9027 Male   12 years Surgical specimen 
9032 Male   14 years Surgical specimen 
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9036 Female   5 years Surgical specimen 
9101 Male   2 years Surgical specimen 
9127 Male   15 years Surgical specimen 
9608 Male   4 years Surgical specimen 
9609 Male   4 years Surgical specimen 
9611 Male   9 years Surgical specimen 
9612 Male   3 years Surgical specimen 
70898 Male   7 years Not recorded 
70994 Male   16 years 24 
71000 Male   6 years 12 
71008 Male   13 years 24 
71058 Female   10 years 15 
71281 Male   16 years 15 
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APPENDIX K: MULTIPLE REACTION MONITORING (MRM) SETTINGS FOR SULT 
PROTEINS 

 
 

   Parent Transition 

Protein Peptide 
Collision 
Energy 

(%) 
Label m/z z Fragment m/z z 

SULT1A1 VHPEPGTWDSFLEK 23 light 547.935 3 b2 237.135 1 
SULT1A1 VHPEPGTWDSFLEK 16 light 547.935 3 y6 738.367 1 
SULT1A1 VHPEPGTWDSFLEK 23 heavy 550.606 3 b2 237.135 1 
SULT1A1 VHPEPGTWDSFLEK 16 heavy 550.606 3 y6 746.381 1 
SULT1A1 VHPEPGTWDSFLEK 35 light 821.399 2 b2 237.135 1 
SULT1A1 VHPEPGTWDSFLEK 35 heavy 825.406 2 b2 237.135 1 
SULT1A2 VYPHPGTWESFLEK 19 light 563.947 3 y5 623.340 1 
SULT1A2 VYPHPGTWESFLEK 12 light 563.947 3 y12 714.351 1 
SULT1A2 VYPHPGTWESFLEK 19 light 563.947 3 y10 1193.584 1 
SULT1A2 VYPHPGTWESFLEK 19 heavy 566.619 3 y5 631.354 1 
SULT1A2 VYPHPGTWESFLEK 12 heavy 566.619 3 y12 718.358 1 
SULT1A2 VYPHPGTWESFLEK 19 heavy 566.619 3 y10 1201.598 1 
SULT1A3 AHPEPGTWDSFLEK 24 light 538.591 3 b2 209.103 1 
SULT1A3 AHPEPGTWDSFLEK 15 light 538.591 3 y5 623.340 1 
SULT1A3 AHPEPGTWDSFLEK 15 light 538.591 3 b7 690.321 1 
SULT1A3 AHPEPGTWDSFLEK 15 light 538.591 3 y6 738.367 1 
SULT1A3 AHPEPGTWDSFLEK 24 heavy 541.263 3 b2 209.103 1 
SULT1A3 AHPEPGTWDSFLEK 15 heavy 541.263 3 y5 631.354 1 
SULT1A3 AHPEPGTWDSFLEK 15 heavy 541.263 3 b7 690.321 1 
SULT1A3 AHPEPGTWDSFLEK 15 heavy 541.263 3 y6 746.381 1 
SULT1B1 NLNDEILDR 19 light 551.280 2 b2 228.134 1 
SULT1B1 NLNDEILDR 21 light 551.280 2 y3 403.230 1 
SULT1B1 NLNDEILDR 19 light 551.280 2 y7 874.426 1 
SULT1B1 NLNDEILDR 19 heavy 556.285 2 b2 228.134 1 
SULT1B1 NLNDEILDR 21 heavy 556.285 2 y3 413.238 1 
SULT1B1 NLNDEILDR 19 heavy 556.285 2 y7 884.435 1 
SULT1C2 IVQETSFEK 18 light 540.782 2 y5 611.304 1 
SULT1C2 IVQETSFEK 16 light 540.782 2 y6 740.346 1 
SULT1C2 IVQETSFEK 14 light 540.782 2 y7 868.405 1 
SULT1C2 IVQETSFEK 18 heavy 544.789 2 y5 619.318 1 
SULT1C2 IVQETSFEK 16 heavy 544.789 2 y6 748.360 1 
SULT1C2 IVQETSFEK 14 heavy 544.789 2 y7 876.419 1 
SULT1C4 IVHYTSFDVMK 20 light 447.229 3 y2 278.153 1 
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SULT1C4 IVHYTSFDVMK 23 light 447.229 3 b3 350.219 1 
SULT1C4 IVHYTSFDVMK 13 light 447.229 3 y4 492.249 1 
SULT1C4 IVHYTSFDVMK 20 heavy 449.900 3 y2 286.167 1 
SULT1C4 IVHYTSFDVMK 23 heavy 449.900 3 b3 350.219 1 
SULT1C4 IVHYTSFDVMK 13 heavy 449.900 3 y4 500.263 1 
SULT1E1 KPSEELVDR 22 light 536.785 2 y8 472.738 2 
SULT1E1 KPSEELVDR 26 light 536.785 2 y7 847.416 1 
SULT1E1 KPSEELVDR 26 light 536.785 2 y8 944.468 1 
SULT1E1 KPSEELVDR 22 heavy 541.789 2 y8 477.742 2 
SULT1E1 KPSEELVDR 26 heavy 541.789 2 y7 857.424 1 
SULT1E1 KPSEELVDR 26 heavy 541.789 2 y8 954.477 1 
SULT2A1 DEDVIILTYPK 19 light 653.350 2 y6 734.445 1 
SULT2A1 DEDVIILTYPK 18 light 653.350 2 y7 847.529 1 
SULT2A1 DEDVIILTYPK 19 light 653.350 2 y8 946.597 1 
SULT2A1 DEDVIILTYPK 19 heavy 657.358 2 y6 742.459 1 
SULT2A1 DEDVIILTYPK 18 heavy 657.358 2 y7 855.543 1 
SULT2A1 DEDVIILTYPK 19 heavy 657.358 2 y8 954.611 1 
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APPENDIX L: CORRELATION ANALYSES FOR RNA-SEQ DATA FROM CHAPTER 3   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Correlation between SULT1A1, SULT1B1, and SULT1C4 expression measured by RT-PCR 
in prenatal liver. SULT1A1, SULT1B1, and SULT1C4 expression from the prenatal samples 
(n=10) were analyzed using using pairwaise correlation analysis. Each scatter plot shows the 
expression data of one gene against another. The R2 values from the correlation analysis are 
indicated.  
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APPENDIX M: PROTEIN QUANTIFICATION DATA FROM CHAPTER 3 PRESENTED AS 
SCATTER PLOTS 
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Developmental expression of SULT protein in human liver cytosols analyzed by MRM. 
SULT protein contents (fmol/mg) are shown as scatter plots against age of the donor. Age was 
divided into three groups: prenatal [estimated gestational age (EGA) in weeks (left)], infant 
[postnatal age (PNA) in months (middle)], and 1-18 years-old (PNA in years, right). 
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APPENDIX N: PERMISSION TO REPUBLISH FIGURES AND TABLES IN CHAPTER 5  
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 SULTs are conjugation enzymes that can modify the activity of a myriad of foreign and 

endogenous molecules. SULT expression was detected in various human tissues, including liver, 

small intestine, and colon. There are 13 human SULT genes that are classified into 4 families, 

SULT1, SULT2, SULT4, and SULT6. In humans, SULT1 and SULT2 families include 11 genes 

that are further divided into 6 subfamilies. In addition to their role in xenobiotic detoxification and 

regulation of physiological processes, SULT enzymes were implicated in the bioactivation of 

procarcinogens. Previous studies detected the expression of most SULT1 and SULT2 enzymes 

during early development, as early as the embryonic stage. There is limited information about the 

developmental expression profiles and regulation of SULT1 and SULT2 enzymes in the liver and 

intestine. The objective of this study was to gain more insight into the roles of SULT1 and SULT2 

enzymes during prenatal and postnatal periods in the two main metabolic organs, liver and 

intestine. To learn more about the regulation of SULT mRNA in differentiating liver cells, we first 

characterized their expression in primary cultures of human fetal hepatocytes and the HepaRG 

model of liver cell differentiation, and then examined the effect of treatment with activators of lipid- 

and xenobiotic-sensing receptors on SULT expression in these in vitro models. Using RT-qPCR 

analysis we demonstrated that SULT1A1 (transcript variants 1, TV1), SULT1C2, SULT1C4, 

SULT1E1, and SULT2A1 mRNA was the most abundant in human fetal hepatocytes. In HepaRG 
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cells, SULT1C2 and SULT1E1 mRNA and protein increased during the transition from 

proliferation to confluency and then decreased as the cells underwent further differentiation 

whereas SULT2A1 mRNA and protein increased during differentiation. Like SULT1C2, SULT1C3, 

SULT1C4, and SULT1B1 mRNA levels were highest in the confluency stage. SULT1A1 and 

SULT2B1 mRNA levels remined relatively constant. Treatment of fetal hepatocytes as well as 

confluent and differentiating HepaRG cells with activators of aryl hydrocarbon receptor, 

constitutive androstane receptor, liver X receptor, peroxisome proliferator-activated receptors 

(PPARs), pregnane X receptor, and vitamin D receptor indicated that SULT1 and SULT2 mRNA 

is regulated by xenobiotic stimuli.  

 We also determined the developmental expression profiles of SULT expression in libraries of 

human liver specimens and cytosols that were collected from prenatal and postnatal (i.e. infants, 

children 1-18 years-old, and adults) donors using RT-PCR and RNA-seq analysis to measure 

SULT mRNA and multiple monitoring reaction (MRM) analysis for SULT protein quantification. In 

this dissertation we reported that SULT1A1 expression did not vary substantially during 

development; SULT1A3, SULT1C2, SULT1C4, and SULT1E1 expression was highest in prenatal 

and/or infant specimens; SULT1A2 and SULT2A1 expression was highest postnatally; and 

SULT1B1 mRNA, as determined by RT-qPCR analysis and protein appears to be highest in 

children and adults. SULT1A1 (TV5), SULT1C3, and SULT2B1 mRNA levels were low regardless 

of developmental stage. SULT1C4 mRNA was most abundant in the prenatal livers, but the 

protein levels were very low. To investigate the reason for this discrepancy we measured the 

mRNA levels of SULT1C4 TVs in the same human liver specimens described above and 

determined whether the individual variants can be translated into protein. Using RT-qPCR and 

RNA-seq analyses we detected at least four SULT1C4 transcript variants, including TV1, TV2, 

E3DEL, which were detected in the intestinal and hepatic cell lines we examined. These TVs were 

preferentially expressed in prenatal liver and TV2 was the most abundant of all. Using Western 

blot analysis we found that only TV1 and TV2 are translated into protein, but TV2 protein was 
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much lower than that of TV1. This finding suggests that TV2 is either less efficiently translated 

into protein than is TV1 or that the TV2 protein is more rapidly degraded, and thus could explain 

the lack of correlation between SULT1C4 mRNA and protein level. Therefore, we conclude that 

SULT1 and SULT2 expression is modulated by xenobiotics and that most of these enzymes play 

an important role in hepatic metabolism, especially during early life stages.   

 Lastly, we examined the mechanism underlying the transcriptional regulation of SULT1C3, 

which is one of the least studied SULTs, by PPARg. While attempting to amplify a 2.8 Kb fragment 

from different sources of human genomic DNA, a 1.9 Kb fragment was sometimes co-amplified 

with the expected 2.8 Kb fragment. When aligning the 1.9 Kb fragment sequence to the published 

SULT1C3 5’-flanking sequence an 863 nt deletion (nt -146 to -1008 relative to the transcription 

start site) was revealed. Transfection of reporter plasmids containing the 2.8 and 1.9 Kb fragments 

into LS180 cells followed by treatment with PPARα, δ, and γ induced the luciferase expression of 

the 2.8 but not the 1.9 Kb construct and indicated that the 863 nt deletion region was sufficient to 

confer PPAR-inducible reporter expression. Three putative PPAR-response elements (PPRE) 

were identified by computational analysis. Serial deletions, site-directed mutations, and RNA 

interference analysis demonstrated that only the distal PPRE (at nt -769) was required to mediate 

PPARg transcriptional activation of SULT1C3. Genotyping analysis revealed that a similar 

deletion exist in the human genome. These findings suggest that SULT1C3 play a role in the 

regulation of PPARg-controlled pathways. 
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